474 research outputs found
Hard Tissue Healing Adjacent to Fresh or Set MTA as Root-End Filling Material
Mineral trioxide aggregate (MTA) has been shown to promote regeneration of periradicular tissues when used as a root-end filling material. The purpose of this study was to compare the effect of fresh MTA with set MTA on hard tissue healing following periradicular surgery.
Under general anesthesia, the root canals of twenty-four mandibular premolars in four 2-year-old beagle dogs were filled with MTA. Two weeks later the root-ends of half of the samples were surgically exposed and resected to the level of set MTA within the canals. After exposing and resecting the other 12 root-ends, class I cavities were prepared in these roots and filled with fresh MTA. Following closure of surgical flaps, the animals were allowed to heal and sacrificed four months later. Hard tissue healing was analyzed histomorphometrically. The frequency of cementum formation in the two groups was compared using a two-sample test for binomial proportions. Mean quantity of cementum formation and bone density were analyzed using the Mann-Whitney U-test at a significance level of alpha = 0.05.
The results indicated that although freshly-placed MTA resulted in a significantly higher incidence of cementum formation (12 out of 12 vs. 8 out of 12, p=0.028), there is no significant difference in the quantity of cementum or osseous healing associated with freshly-placed or set MTA when used as root-end filling material
The effect of anatomic differences on the relationship between renal artery and diaphragmatic crus
Background: The aim of this study is to investigate the effect of anatomic differences on the relationship between renal artery and diaphragmatic crus via the touch of two structures. Materials and methods: The study included dynamic computed tomography (CT) scans of 308 patients performed mainly for characterisation of liver and renal masses. Anatomic differences including the thickness of the diaphragmatic crus, the localisation of renal artery ostium at the wall of aorta, the level of renal artery origin with respect to superior mesenteric artery were evaluated. Statistical relationships between renal artery-diaphragmatic crus contact and the anatomic differences were assessed.
Results: Thickness of the diaphragmatic crus at the level of renal artery origin exhibited a statistically significant relationship to renal artery-diaphragmatic crus contact at the left (p < 0.001) and right side (p < 0.001). There was a statistically significant relationship between high renal artery origin and renal artery- -diaphragmatic crus contact at the left (p < 0.001) and right side (p = 0.01). The localisation of renal artery ostium at the wall of aorta (right side, p = 0.436, left side, p = 0.681) did not demonstrate a relationship to renal artery-diaphragmatic crus contact.
Conclusions: Thickness of the diaphragmatic crus and high renal artery origin with respect to superior mesenteric artery are crucial anatomic differences determining the relationship of renal artery and diaphragmatic crus. (Folia Morphol 2018; 77, 1: 22–28)
Denim sandblasters’ pneumoconiosis
A 28-year-old man with long standing dyspnea for 4 years and a history of dry cough, sweating and loss of weight was admitted to the hospital. Physical examination showed fine crackles at the end of inspiration. The laboratory tests revealed increased low density lipoprotein level with slight increase in erytrocyte sedimentation rate. Sputum smears for blood culture and tuberculosis were negative. He was referred to the radiology department for imaging studies. Chest radiography revealed bilateral reticulonodular infiltrates in upper and middle zones. High resolution computed tomography showed bilateral diffuse intralobular micronodules in upper and mid lung zones with interlobular septal lines also bilateral pleural thickening was seen (A). Right middle lung zone showed hyperaeration (B). Also he had bilateral hilar, right paratracheal, prevascular and subcarinal lymphadenopathies (C). He had been working in producing sandblasted denims for 10 years. The diagnosis was based on clinical history, occupational exposure to silica dust, and chest x-ray findings after other possible diagnoses were ruled out
Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer
AbstractWe have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process
JNK modifies neuronal metabolism to promote proteostasis and longevity.
Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear. Here, we address this question by comprehensively characterizing age-related changes in protein turnover rates in the Drosophila brain, as well as changes in the neuronal metabolome, transcriptome, and carbon flux in long-lived animals with elevated Jun-N-terminal Kinase signaling. We find that these animals exhibit a delayed age-related decline in protein turnover rates, as well as decreased steady-state neuronal glucose-6-phosphate levels and elevated carbon flux into the pentose phosphate pathway due to the induction of glucose-6-phosphate dehydrogenase (G6PD). Over-expressing G6PD in neurons is sufficient to phenocopy these metabolic and proteostatic changes, as well as extend lifespan. Our study identifies a link between metabolic changes and improved proteostasis in neurons that contributes to the lifespan extension in long-lived mutants
Early life stress regulates cardiac development through an IL4-glucocorticoid signaling balance
Stressful experiences early in life can increase the risk of cardiovascular diseases. However, it remains largely unknown how stress influences susceptibility to the disease onset. Here, we show that exposure to brain-processed stress disrupts myocardial growth by reducing cardiomyocyte mitotic activity. Activation of the glucocorticoid receptor (GR), the primary stress response pathway, reduces cardiomyocyte numbers, disrupts trabecular formation, and leads to contractile dysfunction of the developing myocardium. However, a physiological level of GR signaling is required to prevent cardiomyocyte hyperproliferation. Mechanistically, we identify an antagonistic interaction between the GR and the cytokine interleukin-4 (IL-4) as a key player in cardiac development. IL-4 signals transcription of key regulators of cell-cycle progression in cardiomyocytes via signal transducer and activator of transcription 3 (Stat3). GR, on the contrary, inhibits this signaling system. Thus, our findings uncover an interplay between stress and immune signaling pathways critical to orchestrating physiological growth of the heart
JNK modifies neuronal metabolism to promote proteostasis and longevity
Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear. Here, we address this question by comprehensively characterizing age-related changes in protein turnover rates in the Drosophila brain, as well as changes in the neuronal metabolome, transcriptome, and carbon flux in long-lived animals with elevated Jun-N-terminal Kinase signaling. We find that these animals exhibit a delayed age-related decline in protein turnover rates, as well as decreased steady-state neuronal glucose-6-phosphate levels and elevated carbon flux into the pentose phosphate pathway due to the induction of glucose-6-phosphate dehydrogenase (G6PD). Over-expressing G6PD in neurons is sufficient to phenocopy these metabolic and proteostatic changes, as well as extend lifespan. Our study identifies a link between metabolic changes and improved proteostasis in neurons that contributes to the lifespan extension in long-lived mutants
Beneficial effect of the oxygen free radical scavenger amifostine (WR-2721) on spinal cord ischemia/reperfusion injury in rabbits
<p>Abstract</p> <p>Background</p> <p>Paraplegia is the most devastating complication of thoracic or thoraco-abdominal aortic surgery. During these operations, an ischemia-reperfusion process is inevitable and the produced radical oxygen species cause severe oxidative stress for the spinal cord. In this study we examined the influence of Amifostine, a triphosphate free oxygen scavenger, on oxidative stress of spinal cord ischemia-reperfusion in rabbits.</p> <p>Methods</p> <p>Eighteen male, New Zealand white rabbits were anesthetized and spinal cord ischemia was induced by temporary occlusion of the descending thoracic aorta by a coronary artery balloon catheter, advanced through the femoral artery. The animals were randomly divided in 3 groups. Group I functioned as control. In group II the descending aorta was occluded for 30 minutes and then reperfused for 75 min. In group III, 500 mg Amifostine was infused into the distal aorta during the second half-time of ischemia period. At the end of reperfusion all animals were sacrificed and spinal cord specimens were examined for superoxide radicals by an ultra sensitive fluorescent assay.</p> <p>Results</p> <p>Superoxide radical levels ranged, in group I between 1.52 and 1.76 (1.64 ± 0.10), in group II between 1.96 and 2.50 (2.10 ± 0.23), and in group III (amifostine) between 1.21 and 1.60 (1.40 ± 0.19) (p = 0.00), showing a decrease of 43% in the Group of Amifostine. A lipid peroxidation marker measurement ranged, in group I between 0.278 and 0.305 (0.296 ± 0.013), in group II between 0.427 and 0.497 (0.463 ± 0.025), and in group III (amifostine) between 0.343 and 0.357 (0.350 ± 0.007) (p < 0.00), showing a decrease of 38% after Amifostine administration.</p> <p>Conclusion</p> <p>By direct and indirect methods of measuring the oxidative stress of spinal cord after ischemia/reperfusion, it is suggested that intra-aortic Amifostine infusion during spinal cord ischemia phase, significantly attenuated the spinal cord oxidative injury in rabbits.</p
Mineral trioxyde aggregate versus calcium hydroxide in apexification of non vital immature teeth: Study protocol for a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Pulp necrosis is one of the main complications of dental trauma. When it happens on an immature tooth, pulp necrosis implies a lack of root maturation and apical closure. A therapy called apexification is required to induce the formation of a calcified apical barrier allowing a permanent and hermetic root filling. The aim of this prospective randomized clinical trial is to compare Mineral Trioxide Aggregate(MTA)with Calcium Hydroxide(CH)as materials used to induce root-end closure in necrotic permanent immature incisors.</p> <p>Methods/Design</p> <p>This study, promoted by AP-HP, was approved by the ethics committee(CPP Paris Ile de France IV). 34 children aged from 6 to 18 years and presenting a non-vital permanent incisor are selected. Prior to treatment, an appropriate written consent has to be obtained from both parents and from children. Patients are then randomly assigned to either the MTA(experimental)or CH(control)groups. Recalls are performed after 3, 6 and 12 months to determine the presence or absence of a calcified apical barrier through the use of clinical and radiographic exams. Additional criteria such as clinical symptoms, apical radiolucencies, periapical index(PAI)are also noted.</p> <p>Trial registration</p> <p>ClinicalTrials.gov no. <a href="http://www.clinicaltrials.gov/ct2/show/NCT00472173">NCT00472173</a> (First inclusion: May 10, 2007; Last inclusion: April 23, 2009; study completed: April 15, 2010)</p
- …