30 research outputs found
Une démarche pour l'enseignement des réseaux et de la communication
Cet article se propose de faire le point sur l'enseignement de l'informatique dans le domaine des réseaux. Il s'appuie sur nos expériences pédagogiques post-baccalauréat dans les filiÚres informatiques ( BTS, IUT, MIAG, MAITRISE, DEA, DESS... ).Nous décrivons dans une premiÚre partie le « concept réseau » et son rÎle prépondérant dans l'informatique d'aujourd'hui. Face aux problÚmes posés par ce domaine complexe, nous énonçons quelques « rÚgles d'or » pour une approche progressive et applicative conduisant à expérimenter des systÚmes de communications locaux.Nous exposons notre démarche didactique pour l'une des rÚgles énoncées : « Apprendre la communication ». Nous l'illustrons à travers l'utilisation d'un logiciel d'enseignement assisté par ordinateur. Ce produit réalisé par notre équipe concerne le R.N.I.S. (Réseau Numérique à Intégration de Service). Il permet à un étudiant de se familiariser avec les concepts, les services, l'architecture et la mise en oeuvre d'un réseau R.N.I.S
Desenvolvimento de frameworks para a modelagem do risco de crédito por meio de algoritmos de classificação
Granting credit is a vital activity in the financial industry. For the success of financial institutions, as well as the equilibrium of the credit system as a whole, it is important that credit risk management systems efficiently evaluate the probability of default of potential debtors based on their historical data. Classification algorithms are an interesting approach to this problem in the form of Credit Scoring models. Since the emergence of quantitative analytical methods with this purpose, statistical models persist as the most commonly chosen method, given their easier implementation and inherent interpretability. However, advances in Machine Learning have developed new and more complex algorithms capable of handling a bigger amount of data, often with an increase in predictive power. These new approaches, although not always readily transferable to practical applications in the financial industry, present an opportunity for the development of credit risk modeling and have piqued the interest of researchers in the field. Nonetheless, researchers seem to focus on model performance, not appropriately setting up guidelines to optimize the modeling process or considering the present regulation for model implementation. Thereby, this dissertation establishes frameworks for consumer credit risk modeling based on classification algorithms while guided by a systematic literature review on the topic. The proposed frameworks incorporate ML techniques, data preprocessing and balancing, feature selection (FS), and hyperparameter optimization (HPO). In addition to the bibliographic research, which introduces us to the main classification algorithms and appropriate modeling steps, the development of the frameworks is also based on experiments with hundreds of models for credit risk classification, using Logistic Regression (LR), Decision Trees (DT), Support Vector Machines (SVM), Random Forest (RF), as well as boosting and stacking ensembles, to efficiently guide the construction of robust and parsimonious models for credit risk analysis in consumer lending.AgĂȘncia 1A concessĂŁo de crĂ©dito Ă© uma atividade vital da indĂșstria financeira. Para o funcionamento e sucesso das instituiçÔes financeiras, assim como a manutenção do equilĂbrio do sistema creditĂcio, a modelagem de risco de crĂ©dito tem o papel de avaliar a probabilidade de inadimplĂȘncia de potenciais devedores com base em dados histĂłricos. Algoritmos de classificação apresentam uma abordagem interessante para esta finalidade na elaboração de modelos para Credit Scoring. Desde o surgimento das metodologias analĂticas e quantitativas para esta modelagem, persistem na indĂșstria modelos estatĂsticos, dotados de maior interpretabilidade e fĂĄcil implementação. Contudo, com o desenvolvimento na ĂĄrea de Machine Learning (ML), surgiram novos algoritmos capazes de trabalhar com um maior volume de dados e com melhor performance preditiva. Estes algoritmos, apesar de nem sempre prontamente transferĂveis da academia para a indĂșstria, apresentam uma oportunidade para o desenvolvimento da modelagem do risco de crĂ©dito, tendo consequentemente despertado um interesse de pesquisadores na ĂĄrea. A literatura, por sua vez, se enfoca na performance dos modelos, dificilmente estabelecendo diretrizes para a otimização do processo de modelagem ou se atentando Ă s regulamentaçÔes vigentes para a sua aplicação prĂĄtica na indĂșstria financeira. Desta forma, esta dissertação, embasada por uma revisĂŁo sistemĂĄtica de literatura, propĂ”e frameworks para a modelagem do risco de crĂ©dito incorporando o uso de tĂ©cnicas de ML, prĂ©-processamento e balanceamento de dados, feature selection (FS) e otimização de hiper-parĂąmetros (OHP). AlĂ©m da pesquisa bibliogrĂĄfica, que possibilita uma familiarização com os principais algoritmos de classificação e as etapas de modelagem apropriadas, o desenvolvimento dos frameworks tambĂ©m Ă© fundamentado pela elaboraçao de centenas de modelos para classificação do risco de crĂ©dito, partindo dos algoritmos de RegressĂŁo LogĂstica (Logistic Regression - LR), Ărvores de DecisĂŁo (Decision Trees - DT), Support Vector Machines (SVM), Random Forest (RF), assim como ensembles de boosting e stacking, para direcionar de maneira eficiente a construção de modelos robustos e parcimoniosos para a anĂĄlise do risco na concessĂŁo de crĂ©dito ao consumidor
Articuler dispositifs de formation et Innovations technologiques : RepÚres sur des actions de pédagogie inversée
International audienceDans le contexte actuel de lâĂ©ducation, toute formation universitaire devrait traduire un besoin dâimplication volontaire et responsable, de mĂȘme que la nĂ©cessaire analyse des contextes et mĂ©canismes dâapprentissage en vue de leur adaptation aux diffĂ©rents publics. Suivant le postulat selon lequel lâapprenant comme lâenseignant dĂ©veloppe et exerce un savoir dans lâaction et par celle-ci, nous essaierons de comprendre le fonctionnement du dispositif technique et pĂ©dagogique, en insistant sur le concept de classe inversĂ©e. En ce sens, nous aborderons la notion de ressources internes (ressources cognitives, conatives de lâapprenant) et ressources externes (ressourcesmatĂ©rielles et humaines)
Mutuality as a method: advancing a social paradigm for global mental health through mutual learning
Purpose:
Calls for âmutualityâ in global mental health (GMH) aim to produce knowledge more equitably across epistemic and power differences. With funding, convening, and publishing power still concentrated in institutions in the global North, efforts to decolonize GMH emphasize the need for mutual learning instead of unidirectional knowledge transfers. This article reflects on mutuality as a concept and practice that engenders sustainable relations, conceptual innovation, and queries how epistemic power can be shared.
//
Methods:
We draw on insights from an online mutual learning process over 8 months between 39 community-based and academic collaborators working in 24 countries. They came together to advance the shift towards a social paradigm in GMH.
//
Results:
Our theorization of mutuality emphasizes that the processes and outcomes of knowledge production are inextricable. Mutual learning required an open-ended, iterative, and slower paced process that prioritized trust and remained responsive to all collaboratorsâ needs and critiques. This resulted in a social paradigm that calls for GMH to (1) move from a deficit to a strength-based view of community mental health, (2) include local and experiential knowledge in scaling processes, (3) direct funding to community organizations, and (4) challenge concepts, such as trauma and resilience, through the lens of lived experience of communities in the global South.
//
Conclusion:
Under the current institutional arrangements in GMH, mutuality can only be imperfectly achieved. We present key ingredients of our partial success at mutual learning and conclude that challenging existing structural constraints is crucial to prevent a tokenistic use of the concept
Switching back from IFRS local GAAP ::does it impact target price accuracy and analyst optimism?
Prior research shows that mandatory IFRS adoption provided some benefits for financial
analysts. We extend this literature by investigating whether switching back from IFRS to local
GAAP reduces these benefits. More precisely, we analyze the impact of such a switch on target
price errors in Switzerland, where several firms have decided to abandon IFRS and use Swiss
GAAP. Our cross-sectional analysis shows that analystsâ errors are significantly lower for firms
applying IFRS. The results from our staggered difference-in-differences suggest a significant
increase in the absolute target price errors after a switch from IFRS to Swiss GAAP. Thus, we
conclude that target price accuracy decreases when opacity increases. However, analysts are
usually more optimistic about firms using IFRS, and analyst optimism significantly decreases
after a switch from IFRS to Swiss GAAP. This latter finding suggests that analysts become
more prudent when opacity increases. Overall, we conclude that switching back from IFRS to
local GAAP has some negative and some positive consequences for financial analysts
Utilisation d'un jeu sérieux de diagnostic dentaire
National audienceCet article relate l'introduction d'un jeu sérieux dans un module d'enseignement en d'odontologie. AprÚs avoir détaillé le contexte pédagogique et les raisons qui ont motivé l'introduction d'un jeu sérieux, on s'attache à préciser les éléments méthodologiques qui ont permis la bonne réalisation de l'objet et à détailler les retours d'expérience qui ont validé la démarche
Former et informer à l'Úre du développement durable - Enjeux de performance pour un enseignement socialement responsable (Colloque international de la CIFEODD 2018, Pondichéry, Inde)
International audienc
La classe inversée ou la réorganisation de l'espace-temps dans la dualité des paradigmes "Enseigner/apprendre"
National audienceCette communication vise Ă montrer comment les technologies de lâinformation et de la communication facilitent la mise en Ćuvre dâune pĂ©dagogie centrĂ©e sur lâapprenant, prenant en compte les dimensions de lâespace-temps dans sa formation. Le paradigme d'enseignement doit laisser plus de place au paradigme d'apprentissage oĂč les aspects pĂ©dagogiques quâils soient transmissifs, formatifs ou immersifs ne peuvent ĂȘtre dissociĂ©s de lâorganisation des diffĂ©rentes activitĂ©s quâelles se dĂ©roulent en prĂ©sentiel ou Ă distance. Dans cet article, nous expliquerons comment le concept de classe inversĂ©e a permis dâoptimiser le temps de formation en favorisant lâinteraction et les Ă©changes humains. On n'apprend plus uniquement seul chez soi mais on apprend ensemble en classe. Nous verrons aussi comment les technologies numĂ©riques de rapid learning, de quiz et/ou de jeux sĂ©rieux et lâusage de tablettes permettent de construire des modules de formation couvrant les diffĂ©rents aspects pĂ©dagogiques. Les expĂ©riences de classe inversĂ©e dĂ©jĂ menĂ©es dans des Ă©tablissements scolaires et universitaires, en particulier aux Etats-Unis, au Canada et en Belgique, font leur apparition en France. Nous dĂ©crirons la mise en Ćuvre de ce concept ou plutĂŽt de cette philosophie dâenseignement/apprentissage dans le cadre de modules en licence. Nous verrons comment lâusage de tablettes en classe prend sa place dans ce dispositif pour en amĂ©liorer lâinteraction
Apprendre au-delà des frontiÚres universitaires, entre mythe et réalité
International audienceLes MOOC accueillent des publics diversifiĂ©s ayant des objectifs de formation trĂšs hĂ©tĂ©rogĂšnes. La question des effets de la formation ne peut alors obtenir une rĂ©ponse que si lâĂ©valuation est centrĂ©e sur les apprenants. Loin de faire partie dâun projet professionnel ciblĂ©, le MOOC donne lâimpression dâĂȘtre dans bien des cas la porte dâentrĂ©e en formation la plus acceptable Ă un moment donnĂ©. Nos Ă©tudes sur le suivi de MOOC thĂ©matique nous permettent de dĂ©velopper une approche multidimensionnelle des relations : « sĂ©lections et motivations dâentrĂ©e en formation », « formation professionnelle et travail » et « croyances et reprĂ©sentations des apprenants sur leurs capacitĂ©s dâapprentissage »
De la formation ouverte et à distance aux apprentissages collectifs médiatisés : L'exemple des MOOC
International audienceProfessionalization skills is accompanied by a diversification of training courses, dissemination methods and specialties offered on an international scale. Thisevolution contributes to an increasing distinction between the training process and itsvalidation by a diploma/degree (si universitaire). Regarding MOOCs, we question on theirperformance in terms of recognition and valorization of training courses for the learners. Maythis type of training be considered equivalent, at a time, by a learner and the professionalworld? Do not MOOCs provide additional skills and experiences recoverable in aprofessional context? All these items become a priority in the evaluation of the disseminationof learnings. In this paper, we discuss differences in the appreciation and valuation ofprofessionalization in analyzing of changes between training courses and jobs, taking intoaccount the topic multiplicity related to the performance and diversity of skills required in theprofessional context