169 research outputs found

    Application of Data Mining In Marketing

    Full text link
    One of the most important problems in modern finance is finding efficient ways to summarize and visualize the stock market data to give individuals or institutions useful information about the market behavior for investment decisions. The enormous amount of valuable data generated by the stock market has attracted researchers to explore this problem domain using different methodologies. Potential significant benefits of solving these problems motivated extensive research for years. The research in data mining has gained a high attraction due to the importance of its applications and the increasing generation information. This paper provides an overview of application of data mining techniques such as decision tree. Also, this paper reveals progressive applications in addition to existing gap and less considered area and determines the future works for researchers.Comment: 06 Pages, 02 Figures, 01 Table, Volume 2, Issue

    Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment

    Get PDF
    Malignant melanoma of the skin (CMM) is associated with ultraviolet radiation exposure, but the mechanisms and even the wavelengths responsible are unclear. Here we use a mammalian model to investigate melanoma formed in response to precise spectrally defined ultraviolet wavelengths and biologically relevant doses. We show that melanoma induction by ultraviolet A (320–400 nm) requires the presence of melanin pigment and is associated with oxidative DNA damage within melanocytes. In contrast, ultraviolet B radiation (280–320 nm) initiates melanoma in a pigment-independent manner associated with direct ultraviolet B DNA damage. Thus, we identified two ultraviolet wavelength-dependent pathways for the induction of CMM and describe an unexpected and significant role for melanin within the melanocyte in melanomagenesis

    A melanin-independent interaction between Mc1r and Met signalling pathways is required for HGF-dependent melanoma

    Get PDF
    Melanocortin 1 receptor (MC1R) signaling stimulates black eumelanin production through a cAMP-dependent pathway. MC1R polymorphisms can impair this process, resulting in a predominance of red phaeomelanin. The red hair, fair skin and UV sensitive phenotype is a well-described melanoma risk factor. MC1R polymorphisms also confer melanoma risk independent of pigment. We investigated the effect of Mc1r deficiency in a mouse model of UV-induced melanoma. C57BL/6-Mc1r+/+-HGF transgenic mice have a characteristic hyperpigmented black phenotype with extra-follicular dermal melanocytes located at the dermal/epidermal junction. UVB induces melanoma, independent of melanin pigmentation, but UVA-induced and spontaneous melanomas are dependent on black eumelanin. We crossed these mice with yellow C57BL/6-Mc1re/e animals which have a non-functional Mc1r and produce predominantly yellow phaeomelanin. Yellow C57BL/6-Mc1re/e-HGF mice produced no melanoma in response to UVR or spontaneously even though the HGF transgene and its receptor Met were expressed. Total melanin was less than in C57BL/6-Mc1r+/+-HGF mice, hyperpigmentation was not observed and there were few extra-follicular melanocytes. Thus, functional Mc1r was required for expression of the transgenic HGF phenotype. Heterozygous C57BL/6-Mc1re/+-HGF mice were black and hyperpigmented and, although extra-follicular melanocytes and skin melanin content were similar to C57BL/6-Mc1r+/+-HGF animals, they developed UV-induced and spontaneous melanomas with significantly less efficiency by all criteria. Thus, heterozygosity for Mc1r was sufficient to restore the transgenic HGF phenotype but insufficient to fully restore melanoma. We conclude that a previously unsuspected melanin-independent interaction between Mc1r and Met signaling pathways is required for HGF-dependent melanoma and postulate that this pathway is involved in human melanoma

    Molecular analysis reveals heterogeneity of mouse mammary tumors conditionally mutant for Brca1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of therapies for patients with BRCA1 mutations has been hampered by lack of readily available <it>in vitro </it>and <it>in vivo </it>models. We recently showed that transplantation of transgenic mammary tumors as cell suspensions into naïve recipients generates reproducible tumors with remarkable stability of gene expression profile. We examined the expression profiles of original and serially transplanted mammary tumors from <it>Brca1 </it>deficient mice, and tumor derived cell lines to validate their use for preclinical testing and studies of tumor biology.</p> <p>Methods</p> <p>Original tumors, serially transplanted and multiple cell lines derived from <it>Brca1 </it>mammary tumors were characterized by morphology, gene and protein expression, and cell surface markers.</p> <p>Results</p> <p>Gene expression among <it>Brca1 </it>tumors showed more heterogeneity than among previously characterized tumors from MMTV-<it>PyMT </it>and -<it>Wnt1 </it>models. Gene expression data segregated <it>Brca1 </it>tumors into 3 distinct types: basal, mixed luminal, and tumors with epithelial-to-mesenchymal transition (EMT). Serial transplantation of individual tumors and multiple cell lines derived from the original tumors recapitulated the molecular characteristics of each tumor of origin. One tumor had distinct features of EMT and gave rise to cell lines that contained a distinct CD44<sup>+</sup>/CD24<sup>-/low </sup>population that may correlate with human breast cancer stem cells.</p> <p>Conclusion</p> <p>Although individual tumors expanded by transplantation maintain the genomic profile of the original tumors, the heterogeneity among <it>Brca1 </it>tumors limits the extent of their use for preclinical testing. However, cell lines offer a robust material for understanding tumor biology and response to therapies driven by BRCA1 deficiency.</p

    Functional profiling of long intergenic non-coding RNAs in fission yeast

    Get PDF
    Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions

    Oral delivery of il-27 recombinant bacteria attenuates immune colitis in mice

    Get PDF
    BACKGROUND & AIMS: Treatment of inflammatory bowel disease (IBD) would benefit from specific targeting of therapeutics to the intestine. We developed a strategy for localized delivery of the immunosuppressive cytokine IL27, which is actively synthesized in situ by the food-grade bacterium Lactococcuslactis (LL-IL-27), and tested its ability to reduce colitis in mice. METHODS: The 2 genes encoding mouse IL27 were synthesized with optimal codon usage for L lactis and joined with a linker; a signal sequence was added to allow for secretion of the product. The construct was introduced into L lactis. Colitis was induced via transfer of CD4(+)CD45RB(hi) T cells into Rag(−/−) mice to induce colitis; 7.5 weeks later, LL-IL-27 was administered to mice via gavage. Intestinal tissues were collected and analyzed. RESULTS: LL-IL-27 administration protected mice from T-cell transfer-induced enterocolitis and death. LL-IL-27 reduced disease activity scores, pathology features of large and small bowel, and levels of inflammatory cytokines in colonic tissue. LL-IL-27 also reduced numbers of CD4(+) and IL17(+) T cells in gut-associated lymphoid tissue. The effects of LL-IL-27 required production of IL10 by the transferred T cells. LL-IL-27 was more effective than either LL-IL-10 or systemic administration of recombinant IL27 in reducing colitis in mice. LL-IL-27 also reduced colitis in mice following administration of dextran sodium sulfate. CONCLUSIONS: L lactis engineered to express IL27 (LL-IL-27) reduces colitis in mice, by increasing production of IL10. Mucosal delivery of LL-IL-27 could be a more effective and safer therapy for IBD

    Toxicity of polybrominated biphenyls (Firemaster BP-6) in rodents

    Full text link
    Pregnant rodents were fed concentrations of a mixture of polybrominated biphenyls (Firemaster BP-6) during the pregnancy. The material appears to be weakly teratogenic, causing exencephaly and cleft palate in mice. Decreasing birth weight with increasing dosage of the material was seen in both mice and rats. Nonpregnant mice fed 1000 ppm Firemaster BP-6 for 11 days had a marked increase in liver size and weight.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21936/1/0000343.pd

    Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species

    Get PDF
    Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5′-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress
    • …
    corecore