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A melanin-independent interaction between Mc1r and Met
signaling pathways is required for HGF-dependent melanoma

Agnieszka Wolnicka-Glubisz1,2, Faith M. Strickland3, Albert Wielgus4, Miriam Anver5, Glenn Merlino6, Edward C. De Fabo1

and Frances P. Noonan1

1 Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC
2 Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
3 Department of Dermatology, The Henry Ford Health Sciences Center, Detroit, MI
4 Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
5 Pathology/Histotechnology Laboratory Frederick National Laboratory for Cancer Research, Frederick, MD
6 Laboratory of Cancer Biology & Genetics, National Cancer Institute, NIH, Bethesda, MD

Melanocortin 1 receptor (MC1R) signaling stimulates black eumelanin production through a cAMP-dependent pathway. MC1R

polymorphisms can impair this process, resulting in a predominance of red phaeomelanin. The red hair, fair skin and UV sen-

sitive phenotype is a well-described melanoma risk factor. MC1R polymorphisms also confer melanoma risk independent of

pigment. We investigated the effect of Mc1r deficiency in a mouse model of UV-induced melanoma. C57BL/6-Mc1r1/1-HGF

transgenic mice have a characteristic hyperpigmented black phenotype with extra-follicular dermal melanocytes located at the

dermal/epidermal junction. UVB induces melanoma, independent of melanin pigmentation, but UVA-induced and spontaneous

melanomas are dependent on black eumelanin. We crossed these mice with yellow C57BL/6-Mc1re/e animals which have a

non-functional Mc1r and produce predominantly yellow phaeomelanin. Yellow C57BL/6-Mc1re/e-HGF mice produced no mela-

noma in response to UVR or spontaneously even though the HGF transgene and its receptor Met were expressed. Total mela-

nin was less than in C57BL/6-Mc1r1/1-HGF mice, hyperpigmentation was not observed and there were few extra-follicular

melanocytes. Thus, functional Mc1r was required for expression of the transgenic HGF phenotype. Heterozygous C57BL/6-

Mc1re/1-HGF mice were black and hyperpigmented and, although extra-follicular melanocytes and skin melanin content were

similar to C57BL/6-Mc1r1/1-HGF animals, they developed UV-induced and spontaneous melanomas with significantly less effi-

ciency by all criteria. Thus, heterozygosity for Mc1r was sufficient to restore the transgenic HGF phenotype but insufficient to

fully restore melanoma. We conclude that a previously unsuspected melanin-independent interaction between Mc1r and Met

signaling pathways is required for HGF-dependent melanoma and postulate that this pathway is involved in human melanoma.

The human (MC1R) and mouse (Mc1r) melanocortin 1
G-protein coupled cell surface receptors play important roles in
melanocyte biology, notably in the production of melanin pig-
ment.1 The Mc1r ligands, melanocyte stimulating hormone
(a-MSH) and ACTH are derived from the propriomelanocortin
peptide (POMC)2 released from keratinocytes on exposure to
UV radiation.3 Engagement between Mc1r and a-MSH results
in stimulation of black eumelanin production through a cAMP-
dependent signaling pathway.1 In humans, the MC1R is highly
polymorphic with more than 70 variants described.4 A subset of
these polymorphisms consists of mutations that impair the
cAMP signaling pathway and eumelanin production, resulting
in a higher proportion of reddish phaeomelanin and a pheno-
type with red hair, fair skin, decreased photoprotection and
increased UV sensitivity.4 These MC1R polymorphisms are well
described as moderately penetrant genetic risk factors for mela-
noma, consistent with the UV sensitive phenotype.5,6 A pro-
oxidant role for phaeomelanin has been postulated to be impor-
tant in this melanoma susceptibility.7,8 MC1R polymorphisms
can, however, confer increased melanoma risk even in subjects
who lack the red hair phenotype, indicating that non-
pigmentary aspects of MC1R signaling are also important in
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melanoma susceptibility.5 In this regard, MC1R signaling has
been demonstrated to facilitate DNA repair—notably nucleotide
excision repair9–12 and to decrease UV-induced oxidative stress
in a p53-dependent manner.13 MC1R functional polymorphisms
decrease DNA repair14,15 suggesting a mechanism for pigment
independent increased melanoma risk.

Mouse models of melanoma allow experimental manipula-
tion and dissection of UV signaling pathways in melanoma. We
have used the HGF (hepatocyte growth factor/scatter factor)
transgenic mouse model for UV-induced melanoma.16–19 HGF
signals through MET, a multifunctional receptor tyrosine kinase
that stimulates pathways highly relevant to human melanoma
including RAS/RAF/MEK/ERK and RAS/PI3K/AKT.20 In the
HGF transgenic mouse, the HGF transgene is well expressed in
melanocytes, which remain ectopically located in the dermis
throughout the lifetime of the mouse, in contrast to wild-type
mice in which melanocytes reside predominantly in the hair fol-
licles.16–19 A single dose of UV radiation to neonatal HGF
transgenic mice results several months later in the development
of melanoma, which closely resemble human melanoma in his-
topathology.16–19 We have recently used this model to identify
two pathways to melanoma—a UVB pathway associated with
direct UVB DNA damage that occurs both in albino and in
pigmented mice and a UVA pathway that requires black eume-
lanin pigment and is associated with oxidative DNA damage.19

Spontaneous melanomas in this model were also dependent on
the presence of eumelanin.19,21 In the current study we have
used the transgenic HGF model to investigate the role of phaeo-
melanin and the Mc1r in UV-induced melanoma.

Methods
Mice

Mice heterozygous for the HGF transgene22 were maintained on
the C57BL/6-Mc1r1/1 background and for these studies were
crossed/backcrossed with C57BL/6-Mc1re/e mice, which lack a
functional Mc1r receptor,23 a kind gift of Dr M. Lynn Lamoureux.
C57BL/6-Dct:LacZ mice24 were crossed/backcrossed with C57BL/
6-Mc1r1/1-HGF mice and C57BL/6-Mc1re/e mice. All animal
experimentation was carried out according to NIH guidelines.

UV irradiation

Littermate HGF transgenic and non-transgenic yellow
C57BL/6-Mc1re/e and black C57BL/6-Mc1re/1 neonatal mice
were UV irradiated at 3.5 days of age with 9.5 kJ/m2 of UV
radiation from F40 sunlamps which consisted of 6.2 kJ/m2 of

UVB (280–320 nm) and 3.3 kJ/m2 of UVA (320–400 nm) as
described.16–19

Melanoma observations

Mice were shaved at 8 weeks of age and followed every 2
weeks for lesion development as described.16–19 Melanomas
were histologically confirmed using criteria described previ-
ously.16–19 Diagnosis of melanoma in study mice was done
conservatively, when tumors had coalesced melanocytes with
radial or vertical spread, compression of adjacent tissue, junc-
tional activity or pagetoid spread.

RT-PCR

Transgenic HGF was measured by RT-PCR using Mt1-HGF
primers described.25 Primers were: Mt1-HGF forward: 50-
ACTCGTCCAACGACTATA-30 and reverse: 50-CTGAGGAA
TGTCACAGACTTCGTA-30; b-actin forward: ACTGGCATC
GTGATGGACTC-30 and reverse: 5’-TCAGGCAGCTCGTA
GCTCTT-30.

Isolation of keratinocytes and melanocytes from mouse skin

Keratinocytes were obtained from 7 day old mouse skin using
a modification of the method of Drukala et al.26 Skin pieces
were washed with PBS, cleaned of fat, transferred to dispase
(12.5 U/ml in PBS and Protease from Bacillus polymyxa,
Sigma) and incubated at 4�C for 17 hr. The epidermis was
removed and incubated for 5 min at 37�C in 0.25% trypsin/
EDTA (Gibco). Samples were mixed by pipetting, resuspended
in PBS and 20% NCS and centrifuged for 5 min at 1,000 rpm.
The cells were resuspended and 100,000 cells spun onto glass
slides in a cytocentrifuge (CytospinVR 3; Shandon) for immu-
nofluorescence staining. Skin cell populations enriched in
melanocytes were isolated using cell sorting.27,28 Briefly, about
4 to 18 3 106 freshly isolated skin cells from 7-day-old mice
were stained with anti-c-kit-PE and anti-CD45-APC (Caltag,
S. San Francisco, CA) antibodies and sorted on a FACS-Aria
(Becton-Dickinson, San Jose, CA) for c-kit1/CD45- cells.29

Histology and immunohistochemistry

Cyclobutane pyrimidine dimer DNA damage was vizualised
by immunohistochemistry as described.28 Ki67 staining was
done on paraffin sections following antigen retrieval. Slides
were blocked with rabbit serum, incubated with rabbit anti-
Ki67 (1:100, VectorLab) overnight at 4�C, using Vectastain
ABC-AP and Vector Red Alkaline Phosphatase Substrate kits

What’s new?

Melanocortin 1 receptor (MC1R), which plays a central role in the production of melanin, is subject to marked genetic varia-

tion, with certain variants increasing melanoma risk through fair skin phenotype. Others MCR1 variants, however, influence

melanoma risk through pigment-independent alterations. Such variants may include those that affect interactions between

Mc1r and hepatocyte growth factor (HGF)/Met signaling, as suggested by this investigation of Mcr1 deficiency in a UV-induced

melanoma mouse model. HGF has been implicated in tumor escape from B-RAF inhibitors in human melanoma, and MET is a

target for melanoma therapy, suggesting potential therapeutic significance for the findings.
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(Vector Lab). Cytospins of keratinocytes or melanocytes were
fixed with acetone for 10 min, air dried and rinsed with PBS.
Slides were incubated for 1 hr with rabbit-anti-mouse Dct
(1:200 serum, a gift from V. Hearing) in 0.1% BSA in PBS,
rinsed with PBS and incubated for 1 hr with monoclonal
mouse anti-human MET antibodies (1:20, Vector Lab, Bur-
lingame, CA) in 0.1% BSA/PBS. They were then washed 33

and stained for 1 hr at RT with secondary antibodies: goat
F(ab)2 anti-rabbit antibody conjugated with Alexa 594 (1:100,
Molecular Probes, Eugene, OR) and goat anti-mouse IgM
conjugated with Alexa 488 (1:100, Molecular Probes, Eugene,
OR) and washed 33 with PBS. Negative controls were
obtained by omitting the first antibody. Slides were examined
using an Olympus BX-60 microscope (Melville, NY) with a
403 objective configured with an evolution MP digital cam-
era and Image-Pro Plus software (Media, Cybernetics, Silver
Spring, MD). LacZ was visualized by histochemistry as
described.24 Fontana stain was carried out on formalin fixed
paraffin embedded sections as described.19

Melanin

Melanin content in mouse dorsal skin was determined using
ESR as described.19,21 Briefly, characteristic eumelanin and
pheomelanin signals were recorded in liquid nitrogen (77 K)
in a Bruker EMX spectrometer. A mixture (1:1) of 3,4-dihy-
droxyphenylalanine (DOPA)-melanin and cysteinyl-DOPA-
melanin synthesized enzymatically was used as a melanin
standard of combined eu- and pheomelanin components,
respectively.

Statistical analyses

Kaplan-Meier survival analysis with a logrank test for signifi-
cance, v2 analysis and t-test were carried out using Statview
(SAS Institute) or SigmaPlot (Systat). All t-tests were two-
sided. For survival analysis, time to first lesion subsequently
confirmed as a melanoma was used as previously
described.16–19

Results
Mc1r-deficient C57BL/6-Mc1re/e-HGF mice are yellow and

express the HGF transgene but are not hyperpigmented

Mc1r-deficient HGF-transgenic mice on the C57BL/6 back-
ground were obtained by crossing/backcrossing black C57BL/
6-Mc1r1/1-HGF transgenics with Mc1r-deficient recessive
yellow (C57BL/6-Mc1re/e) mice. The resulting C57BL/6-
Mc1re/e-HGF mice had yellow pigmentation (Figs. 1a and
1b) but HGF transgenic animals could not be visually distin-
guished from their yellow non-transgenic (C57BL/6-Mc1re/e)
littermates. The hyperpigmentation typical of black C57BL/6-
Mc1r1/1-HGF transgenics was absent from all locations
except the urethra of C57BL/6-Mc1re/e-HGF females (Fig.
1c). The HGF transgene, however, was expressed at similar
levels in C57BL/6-Mc1re/e-HGF and C57BL/6-Mc1r1/1-HGF
skin (Fig. 1d). Quantitation of melanin in skin from C57BL/
6-Mc1re/e and C57BL/6-Mc1re/e-HGF animals revealed no

significant differences between HGF transgenic and non-
transgenic mice at postnatal day 3 (PND3), PND5 or in
adults and there was no increase over neonatal levels in mel-
anin in adult C57BL/6-Mc1re/e-HGF skin (Fig. 1e). In con-
trast, we previously described in C57BL/6-Mc1r1/1-HGF
mice an eightfold increase in melanin between neonates and
adults.19 Yellow mice of both genotypes produced signifi-
cantly lower levels of total melanin than black mice at all
ages tested (Fig. 1e and Ref. 19). Both keratinocytes (Fig. 1f)
and melanocytes (Fig. 1g) from C57BL/6-Mc1re/e mice
expressed Met.

Heterozygous C57BL/6-Mc1re/1-HGF mice are black and

have quantitatively similar pigmentation to black C57BL/6-

Mc1r1/1-HGF animals

Heterozygous C57BL/6-Mc1re/1-HGF mice were black and
highly pigmented and could readily be identified among their
littermates as neonates and as adults (Figs. 1a and 1b), but
could not be visually distinguished from C57BL/6-Mc1r1/1-
HGF animals.19 Melanin levels were not significantly different
between C57BL/6-Mc1re/1-HGF and C57BL/6-Mc1r1/1-HGF
adult skin (Fig. 1e).

Mc1r-deficient C57BL/6-Mc1re/e-HGF mice do not produce

melanomas

Both UV-induced and spontaneous melanomas have been
described in the black C57BL/6-Mc1r1/1-HGF mouse
model.19,30 Yellow neonatal C57BL/6-Mc1re/e-HGF mice were
UV irradiated at 3 days of age with a dose of 9.5 kJ/m2 from
an F40 source emitting both UVB and UVA (see Meth-
ods17,19) and were followed for melanoma development as
described (see Methods16–19). Yellow C57BL/6-Mc1re/e-HGF
transgenic animals, homozygous for Mc1r deficiency, pro-
duced no melanomas either spontaneously or in response to
UV irradiation (Table 1 and Fig. 2a). Occasional black pig-
mented lesions were observed in these mice but were mela-
nocytic lesions not melanomas (Fig. 2b).

Black heterozygous C57BL/6-Mc1re/1-HGF mice produce

fewer melanomas than black C57BL/6-Mc1r1/1-HGF mice

Heterozygous C57BL/6-Mc1re/1-HGF mice produced UV-
induced melanomas but at a significantly decreased rate com-
pared with the parent C57BL/6-Mc1r1/1-HGF animals
(Table 1 and Fig. 2a). The proportion of animals developing
a melanoma was significantly lower and the number of mela-
nomas per UV irradiated tumor-bearing animal was signifi-
cantly decreased in C57BL/6-Mc1re/1-HGF mice compared
to C57BL/6-Mc1r1/1-HGF mice (Table 1). Only one sponta-
neous melanoma (one of nine) arose in C57BL/6-Mc1re/1-
HGF mice compared to spontaneous melanomas in (15 of
35) C57BL/6-Mc1r1/1-HGF mice19 (Table 1) significantly
different by survival analysis (p5 0.026, logrank). The mela-
nomas that arose in C57BL/6-Mc1re/1-HGF animals were
marked by heavy black pigmentation and the majority
showed epidermal involvement (Fig. 2c). These were
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indistinguishable histologically from the melanomas previ-
ously reported in C57BL/6-Mc1r1/1-HGF mice.19

Mc1r-deficient neonatal skin

Yellow C57BL/6-Mc1re/e-HGF mice. Since Mc1r competent
HGF-transgenic mice have abundant extra-follicular melano-
cytes located in the dermis, predominantly just below the der-
mal/epidermal junction,16–19,22 we investigated extra-follicular
melanocytes in Mc1r-deficient mice. HGF transgenic and wild-
type C57BL/6-Mc1re/e mice had similar numbers of c-kit1/
CD45- skin cells, which are enriched for melanocytes,29 (3.8%
and 4.0% of total cells, respectively). Since C57BL/6-Mc1re/e

melanocytes expressed low levels of the melanocyte identifiers

tyrosinase, Trp-1 and Dct21 and were thus difficult to identify
by immunohistochemistry, the C57BL/6-Mc1re/e-HGF strain
was crossed with Dct-LacZ mice, which enabled melanocytes to
be identified by LacZ staining. In neonatal C57BL/6-Mc1re/e-
HGF-LacZ skin melanocytes were readily detected in hair fol-
licles but only sparsely extra-follicularly. Of five neonatal
C57BL/6-Mc1re/e-HGF-LacZ animals investigated, although all
showed follicular LacZ staining, three had no extra-follicular
LacZ staining at all, one had rare extra follicular LacZ staining
and the fifth animal showed a number of LacZ stained melano-
cytes in the dermis, near the dermal/epidermal junction
(Fig. 3a). In adult C57BL/6-Mc1re/e-HGF-Dct-LacZ mice, mela-
nocytes were detectable in anagen, but not in telogen hair

Figure 1. Mc1r-deficient HGF transgenic mice. Yellow C57BL/6-Mc1re/e-HGF animals do not show hyperpigmentation. (a). White asterisks

indicate neonatal C57BL/6-Mc1re/1-HGF, orange asterisks C57BL/6-Mc1re/e-HGF and C57BL/6-Mc1re/e; unmarked animals are C57BL/6-

Mc1re/1. (b) White asterisk C57BL/6-Mc1re/1-HGF, orange asterisk C57BL/6-Mc1re/e-HGF; unmarked animal is C57BL/6-Mc1re/1. (c). Adult

female C57BL/6-Mc1re/e-HGF but not C57BL/6-Mc1re/e non-transgenic mice show dark pigmentation in the urethra. This was not visible in

male C57BL/6-Mc1re/e-HGF animals (not shown). (d). Expression of the HGF transgene by RT-PCR is similar in C57BL/6-Mc1re/e-HGF and

C57BL/6-Mc1r1/1-HGF neonatal skin but is minimal or absent in wild-type non transgenic (wt) C57BL/6-Mc1re/e and C57BL/6-Mc1r1/1 ani-

mals. (e). Melanin in skin of HGF transgenic (black bars) and non-transgenic (white bars) C57BL/6-Mc1re/e, C57BL/6-Mc1re/1 and C57BL/6-

Mc1r1/1 mice quantitated by ESR. Data represent mean 6 SEM for a minimum of three biological replicates. For yellow Mc1re/e animals

melanin significantly increased from PND3 to PND5 for both transgenic and non transgenic genotypes (p<0.05, t-test) but did not further

increase in adults (p>0.25, t-test). There were no significant differences in melanin between Mc1re/e yellow HGF transgenic and non trans-

genics at any age (p>0.3, t-test). The majority of melanin was phaeomelanin although eumelanin was also detected.21 Melanin in both

HGF transgenic and wild-type yellow mice at PND3 and PND5 was significantly less than the previously described levels19 in HGF transgenic

and non-transgenic black C57BL/6-Mc1r1/1 mice at the same ages (p<0.05, t-test). Melanin levels in adult skin were significantly greater

in C57BL/6-Mc1r1/1 than in C57BL/6-Mc1re/e skin in both HGF transgenic and wild-type animals (p<0.02, t-test). Heterozygous adult

C57BL/6-Mc1re/1-HGF mice had melanin levels similar to C57BL/6-Mc1r1/1-HGF animals (p>0.4, t-test). Data for C57BL/6-Mc1r1/1-HGF

mice was previously reported.19 Met (green) is expressed in keratinocytes (f). and melanocytes (red) (g). Bars 3 lm.

C
ar
ci
n
og

en
es
is

Wolnicka-Glubisz et al. 755

Int. J. Cancer: 136, 752–760 (2015) 2014 UICC



follicles as reported in Mc1r competent animals31 but, in con-
trast to C57BL/6-HGF adult mice19 no extra-follicular melano-
cytes were observed. The lack of the characteristic extra-
follicular melanocytes in MC1r-deficient HGF transgenic ani-
mals was consistent with the absence of hyperpigmentation
(Figs. 1a, 1b and 1e).

UV-induced DNA damage, detected by immunohisto-
chemistry, was similar in yellow C57BL/6-Mc1re/e-HGF and
in black C57BL/6-Mc1r1/1-HGF skin (Fig. 3b). S100 staining
of C57BL/6-Mc1re/e-HGF neonatal skin 48 hr after UV
showed few extra-follicular positive cells (which include
melanocytes) that were located mainly in the deeper dermis
and the frequency was similar in UV irradiated and unirradi-
ated skin (Fig. 3c). Thus, although transgenic HGF was
expressed in C57BL/6-Mc1re/e-HGF animals, in the absence
of functional Mc1r the characteristic transgenic HGF extra-
follicular melanocytes did not occur. The scarcity of extra-
follicular melanocytes was consistent with the absence of
melanomas in yellow Mc1r deficient C57BL/6-Mc1re/e-HGF
mice (Fig. 2a). Investigation of heterozygous Mc1r-deficient
HGF-transgenics revealed, however that a lack of extra-
follicular melanocytes was an insufficient explanation for the
role of Mc1r in melanoma in this model.

Black C57BL/6-Mc1re/1-HGF mice. In contrast to the major
differences in melanoma, the number and location of extra-
follicular melanocytes was similar in black C57BL/6-Mc1re/1-
HGF and black C57BL/6-Mc1r1/1-HGF mice (Fig. 3a) with
extra-follicular melanocytes located chiefly in the dermis just
below the dermal/epidermal junction, consistent with the
hyperpigmentation observed (Figs. 1a, 1b and 1e) in these
mice. Thus, heterozygous Mc1re/1 was sufficient to restore the
transgenic HGF phenotype and a decrease in numbers of
extra-follicular melanocytes or in melanin production could not
explain the decreased melanoma formation in heterozygous
C57BL/6-Mc1re/1-HGF Mc1r-deficient animals. After UV irra-
diation, DNA damage was similar in C57BL/6-Mc1re/1-HGF

and C57BL/6-Mc1r1/1-HGF mice (Fig 3b). Neonatal C57BL/6-
Mc1re/1-HGF melanocytes were responsive to UV irradiation
with activated proliferating dermal melanocytes readily
observed (Fig. 3c). The decreased efficiency of melanomagenesis
in the heterozygous C57BL/6-Mc1re/1-HGF animals thus
appeared to result from a decrease in an interaction between
Mc1r and Met signaling pathways, downstream of the initial
UV events, which was necessary for melanoma development.

Discussion
We have used the HGF transgenic mouse model of UV-
induced melanoma, which has notable similarities to human
CMM, to investigate the role of the Mc1r. In this mouse
model, HGF/Met signaling pathways, which are highly rele-
vant to melanoma, are constitutively activated22 and a single
dose of UV radiation to neonatal HGF transgenic mice ini-
tiates melanomas that appear at several months of age.16–19

The majority of melanomas show epidermal involvement,
recapitulating human disease more closely than the dermal
melanomas typical of most animal models.16–19 We have
previously identified two UV pathways to melanoma in the
transgenic HGF mouse, a UVB-dependent pathway inde-
pendent of pigmentation and a UVA pathway that requires
eumelanin and which is associated with oxidative DNA
damage.19 The MC1R controls the balance between black
eumelanin and red/yellow phaeomelanin,1 and polymor-
phisms in the MC1R are one of the best described risk fac-
tors for melanoma.5,6 The relative contributions of
phaeomelanin pigment and of pigment-independent MC1R
signaling effects to this risk are not entirely clear. We have
addressed the role of the MC1R in melanoma by crossing/
backcrossing black C57BL/6-Mc1r1/1-HGF mice with the
Mc1r deficient recessive yellow (C57BL/6-Mc1re/e) mouse,
which lacks functional Mc1r and expresses mainly, although
not exclusively, phaeomelanin.21,32 In this study, we have
identified a pigment-independent requirement for Mc1r sig-
naling in HGF-dependent melanoma.

Table 1. Melanoma formation is impaired in Mc1r-deficient HGF transgenic mice

Genotype Pigment
Treatment
(UV)1

Total
animals (n)

Melanoma
Bearers (n)

Tumor
Multiplicity
mean (SEM)2

First tumor (d)
mean (SEM)

Mice with
metastases
(n)

C57BL/6-Mc1re/e-HGF Yellow 1 30 0 0 0 0

2 10 0 0 0 0

C57BL/6-Mc1re/1-HGF Black 1 27 73 1.7 (0.4)4 228 (40) 1

2 9 1 1 400 0

C57BL/6-Mc1r1/1-HGF5 Black 1 26 203 3.7 (0.8)4 208 (18) 2

2 35 15 3.9 (0.7) 259 (16) 0

No melanomas were found in UV-treated C57BL/6-Mc1re/e (n 5 19) or C57BL/6-Mc1re/1 (n 5 15) mice lacking the HGF transgene.
1UV treatment was 9.5 kJ/m2 from F40 sunlamps on PND3 as described.16

2Number of melanomas per tumor bearer.
3Proportion of animals with melanoma significantly different (v2, p 5 0.004).
4Significantly different (t-test, p<0.04).
5Previously reported.19
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Yellow HGF-transgenic mice homozygous for recessive yel-
low (C57BL/6-Mc1re/e-HGF) lacked the hyperpigmentation typ-
ical of black HGF transgenic mice and had skin melanin levels
similar to non-transgenic recessive yellow mice, although both
HGF and its receptor Met were expressed. These C57BL/6-
Mc1re/e-HGF animals had few extra-follicular melanocytes, in
contrast to Mc1r-competent C57BL/6-Mc1r1/1-HGF transgen-
ics. This finding complements recent observations that the
Mc1r plays a role in UV-induced melanocyte migration from
the hair follicle to the epidermis,33 a process that does not
require transgenic HGF.34,35 C57BL/6-Mc1re/e-HGF mice pro-
duced no melanomas, either in response to UV radiation or

spontaneously, consistent with the scarcity of extra-follicular
melanocytes. Our investigations of heterozygous C57BL/6-
Mc1re/1-HGF animals revealed, however, that the scarcity of
extra-follicular melanocytes was not a sufficient explanation for
the effect of Mc1r deficiency on melanoma. Heterozygous
C57BL/6-Mc1re/1-HGF animals were indistinguishable from
Mc1r competent C57BL/6-Mc1r1/1-HGF mice both in the
number of dermal melanocytes at the dermal/epidermal junc-
tion and in skin melanin levels but had very significantly
impaired melanoma formation. Thus, a pigment-independent
interaction between the Mc1r and MET signaling pathways was
required for melanoma.

Interestingly, our finding of a lack of melanoma in yellow
Mc1re/e-HGF mice is consistent with observations on other spe-
cies. Yellow Sinclair swine thought to carry Mc1r or ASIP
mutations are resistant to melanoma, in contrast to black ani-
mals of the same lineage.36 Gray Lipizzaner horses which are
null for the Mc1r antagonist ASIP have a higher incidence of
melanoma than horses which carry functional ASIP, indicating
that increased Mc1r signaling promotes melanoma in these ani-
mals.37 Our findings differ, however, from recent observations
in a mouse model carrying the B-Raf V600E mutation where
spontaneous melanomas, dependent on the presence of mela-
nin, occurred in Mc1r deficient (C57BL/6-B-RafCA-Mc1re/e) yel-
low mice.8 There was no information on UV melanomas in
this model. The authors concluded that the presence of phaeo-
melanin in these transgenic mice was responsible for spontane-
ous melanoma formation, although it should be noted that
C57BL/6-Mc1re/e mice produce about 20% eumelanin.21,32 In
our studies, phaeomelanin was clearly not sufficient for melano-
magenesis since yellow C57BL/6-Mc1re/e-HGF mice produced
no melanomas either spontaneously or in response to UV.
These two mouse models, however, have significant differences.
C57BL/6-B-RafCA mice do not have extra-follicular melanocytes
and arising melanomas are, unlike HGF transgenic tumors,
exclusively dermal.8 HGF-transgenic tumors do not have muta-
tions in B-Raf (unpublished observations30). Recent studies have
demonstrated in human melanomas that HGF can mediate
escape from B-RAF inhibition through activation of the MAPK
and PI(3)K-AKT pathways, confirming that the role of HGF in
melanoma is not dependent on activated B-RAF signaling.38,39

A UVB-dependent interaction between human MC1R and
PTEN, a negative regulator of AKT, has been reported that pro-
tects PTEN from degradation40 thus limiting AKT activation. In
this study, human polymorphisms in MC1R showed impaired
UVB induced binding to PTEN, resulting in senescence in cul-
tured melanocytes. These authors also reported a synergism
between MC1R variants and B-RAFV600E in cellular transforma-
tion of genetically engineered human immortalized melanocytes.
An association between MC1R polymorphisms and B-RAF
mutations in human melanoma is, however, somewhat contro-
versial as it has been reported by some groups but not by
others.41–44 It will be of interest to establish the effect of the
Mc1re/e mutation on melanoma in mouse models not depend-
ent on BRafV600E or HGF.

Figure 2. UV-induced melanomas in Mc1r-deficient HGF transgenic

mice. Melanomas were induced with a single dose of UV radiation

containing UVB and UVA (see Table 1 and Methods). (a). C57BL/6-

Mc1re/e-HGF mice made no melanomas. Heterozygous C57BL/6-

Mc1re/1-HGF produced melanomas but at a significantly lower rate

than black C57BL/6-Mc1r1/1-HGF mice (p<0.001, logrank test).

Data for C57BL/6-Mc1r1/1-HGF animals was previously reported19

and was derived simultaneously with the current melanoma stud-

ies. (b). A minority (4 of 30) of C57BL/6-Mc1re/e-HGF mice devel-

oped black lesions (arrows) which on histology (H and E stain,

arrows) were melanocytic lesions, not melanomas. (c). Heterozy-

gous C57BL/6-Mc1re/1-HGF mice developed hyperpigmented black

melanomas (arrows) with epidermal involvement (H and E stain,

arrows) similar to those described for C57BL/6-Mc1r1/1-HGF

mice.19 Bars 100 lm.
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On engagement with its ligand, a-MSH, the MC1R stimulates
formation of black eumelanin via a well described cAMP signal-
ing pathway and many MC1R polymorphisms, particularly the
polymorphisms which confer increased melanoma risk, show
deficient signaling in this pathway.1 Our data thus represent an
inverse of the role of the MC1R in human melanoma where

MC1R polymorphisms significantly increase melanoma risk.
Apart from its pigmentary function, the MC1R is also important
in DNA repair, both in nucleotide excision repair that is respon-
sible for repair of UVB-induced cyclobutane pyrimidine
dimers9–12 and in repair of oxidative lesions13 that can be pro-
duced in melanocytes for example by UVA and melanin.19

Figure 3. UV irradiation and melanocytes in Mc1r deficient mice. (a). Extra-follicular melanocytes (arrows) visualized in neonatal (PND7)

C57BL/6-Mc1re/e-HGF-Dct-LacZ mice (LacZ, blue) are less frequent than in PND3 HGF transgenic C57BL/6-Mc1re/1 and C57BL/6-Mc1r1/1- mice

(arrows, black, Fontana stain). The numbers of melanocytes in HGF transgenic C57BL/6-Mc1re/1 and C57BL/6-Mc1r1/1-mice are similar and

are comparable to those previously published for PND3 and PND5 C57BL/6-Mc1r1/1-mice,19 in contrast to the major differences in melanoma

formation between these two strains (Fig. 2a). (b). UV-induced DNA damage (CPD, brown nuclei) in HGF transgenic neonatal skin is similar

regardless of Mc1r status. (c). Few extra-follicular S100 positive cells (brown) which include melanocytes are detectable in neonatal C57BL/6-

Mc1re/e-HGF skin either unirradiated or 48 hr after UV and all are located in the dermis (black arrows). In unirradiated neonatal C57BL/6-

Mc1re/1-HGF skin pigmented melanocytes (white arrows) occur below the dermal/epidermal junction and occasionally proliferate (Ki67, red).

48 hr after UV there is increased proliferation both in black pigmented melanocytes (white arrows) and in epidermal cells (black arrows). Bars

100 lm. All samples were 5 lm sections of formalin-fixed paraffin embedded skin stained as indicated in Materials and Methods.
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Melanocytes with polymorphisms in MC1R show deficiencies in
both of these repair functions.14,15 Thus, we would have antici-
pated enhanced, not reduced, melanoma in Mc1r deficient ani-
mals, particularly since we have observed that animals deficient
in nucleotide excision repair have significantly enhanced mela-
nomagenesis in the HGF-transgenic model (unpublished).
Unlike the mouse recessive yellow mutation, however, that
results in a prematurely terminated non-functional Mc1r recep-
tor with loss of all signaling,23 the human MC1R polymorphisms
that confer increased melanoma risk yield a receptor with the
potential to retain some function and we postulate that this
retained function, lacking in recessive yellow mice, is critical for
melanoma. Potentially relevant is that a-MSH, the ligand for
Mc1r, has been demonstrated to be anti-inflammatory and
immunosuppressive.45 We have recently demonstrated, however,
that UV inflammation and immunosuppression are intact in
Mc1re/e mice46 and thus a deficient inflammatory response can-
not explain the absence of melanomas in this model. It appears
therefore that a previously unrecognized interaction between
Met signaling and Mc1r is necessary for melanomagenesis in the
HGF mouse model.

There is no published information of which we are aware
describing a specific interaction between the Mc1r and MET
signaling pathways. The MC1R is a G-protein coupled recep-
tor (GPCR) and MET a receptor tyrosine kinase (RTK), and
there are multiple reports of interactions between GPCR and
RTK signaling (reviewed in Ref. 47). Stimulation of ERK via
the human MC1R has been demonstrated to result from Src
tyrosine kinase-mediated transactivation of the c-KIT path-
way.48 The transactivation of c-KIT was unaffected by poly-
morphisms in the human MC1R.48 A further notable
difference, therefore, between the human polymorphisms and
the recessive yellow mutation is that, in the Mc1re/e mouse, c-
Kit transactivation could not occur because of the total loss of
Mc1r function. c-Kit has been implicated in the epidermal
localization of melanocytes in mice,49 suggesting a lack of
Mc1r/c-Kit signaling as a possible explanation for the scarcity
of extra-follicular melanocytes in Mc1re/e animals. It is unclear,
however, if c-Kit is required for this function in HGF trans-
genic mice where the transgenic HGF may be sufficient. There
are also significant differences between the mouse Mc1r and
human MC1R receptors in number of cell surface receptors, in
sensitivity to MSH and in ligand-independent signaling50,51

which may be relevant to the differences between the current
study and findings on human MC1R polymorphisms. There
are also differences between mouse and human skin and hair

follicles52,53 that may be relevant. Of considerable interest are
recent observations54 that demonstrated less proliferation in
melanocytes from UV irradiated human skin in carriers of
Mc1r polymorphisms. It would thus be of considerable interest
to establish if there are quantitative differences in the prolifera-
tive responses of melanocytes from the three HGF geno-
types—Mc1re/e, Mc1re/1 and Mc1r1/1.

Although we have shown that Mc1re/e melanocytes and
keratinocytes express Met, the status of Met signaling in Mc1r
deficient mice is unknown and will be important to establish.
Signaling via Met is complex and employs a range of co-factors
including CD44, integrins and other factors to amplify signaling
and can result in stimulation of multiple signaling pathways.20

Interestingly, stimulation with GPCR agonists in human carci-
noma cells resulted in a rapid and transient phosphorylation of
MET, a process dependent on the production of ROS by
NADPH oxidases.55 Whether similar events are important in
the interaction between Mc1r and MET in melanomagenesis
remains to be established. Our observations, however, that
melanoma formation is impaired in heterozygous C57BL/6-
Mc1re/1-HGF mice even though extra-follicular melanocytes,
which require HGF/c-Met signaling, are similar in number to
those in the Mc1r competent C57BL/6-Mc1r1/1-HGF animals
suggests that the effect of Mc1r deficiency on melanoma
appears unlikely to be a simple effect on MET signaling and
may occur downstream of the HGF/c-Met interaction.

In conclusion, we have used the black transgenic HGF mouse
model for UV-induced melanoma and the recessive yellow Mc1r
deficient mouse to establish that a pigment-independent interac-
tion betweenMc1r and HGF/Met is required for melanoma devel-
opment. We propose that this previously unrecognized pathway
may have a role in human melanoma and that understanding this
interaction is important in view of the potential use of MET inhib-
itors in the treatment of human melanoma.38
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