12 research outputs found

    PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with \u3csup\u3e18\u3c/sup\u3eF-AV-133 (florbenazine) in patients with Alzheimer\u27s disease and Lewy body disorders

    Get PDF
    Background: Biomarkers based on the underlying pathology of Alzheimer\u27s disease (AD) and Dementia with Lewy Bodies (DLB) have the potential to improve diagnosis and understanding of the substrate for cognitive impairment in these disorders. The objective of this study was to compare the patterns of amyloid and dopamine PET imaging in patients with AD, DLB and Parkinson\u27s disease (PD) using the amyloid imaging agent florbetapir F 18 and 18F-AV-133 (florbenazine), a marker for vesicular monamine type 2 transporters (VMAT2).Methods: Patients with DLB and AD, Parkinson\u27s disease (PD) and healthy controls (HC) were recruited for this study. On separate days, subjects received intravenous injections of florbetapir, and florbenazine. Amyloid burden and VMAT2 density were assessed quantitatively and by binary clinical interpretation. Imaging results for both tracers were compared across the four individual diagnostic groups and for combined groups based on underlying pathology (AD/DLB vs. PD/HC for amyloid burden and PD/DLB vs. AD/HC for VMAT binding) and correlated with measures of cognition and parkinsonism.Results: 11 DLB, 10 AD, 5 PD, and 5 controls participated in the study. Amyloid binding was significantly higher in the combined AD/DLB patient group (n = 21) compared to the PD/HC groups (n = 10, mean SUVr: 1.42 vs. 1.07; p = 0.0006). VMAT2 density was significantly lower in the PD/DLB group (n = 16) compared to the AD/ HC group (n = 15; 1.83 vs. 2.97; p \u3c 0.0001). Within the DLB group, there was a significant correlation between cognitive performance and striatal florbenazine binding (r = 0.73; p = 0.011).Conclusions: The results of this study show significant differences in both florbetapir and florbenazine imaging that are consistent with expected pathology. In addition, VMAT density correlated significantly with cognitive impairment in DLB patients (ClinicalTrials.gov identifier: NCT00857506, registered March 5, 2009). © 2014 Siderowf et al.; licensee BioMed Central Ltd

    Tau as a diagnostic instrument in clinical trials to predict amyloid in Alzheimer's disease

    No full text
    Abstract INTRODUCTION Alzheimer's disease (AD) is characterized by the presence of both amyloid and tau pathology. In vivo diagnosis can be made with amyloid and tau positron emission tomography (PET) imaging. Emergent evidence supports that amyloid and tau accumulation are associated and that amyloid accumulation may precede that of tau. This report further investigates the relationship between amyloid and tau to assess whether elevated cortical tau can predict elevated amyloid in participants with early symptomatic AD. METHODS Florbetapir F18 and flortaucipir F18 uptake were evaluated from baseline PET scans collected in three multi‐center studies with cognitively impaired participants, including A05 (N = 306; NCT02016560), TB (N = 310; TRAILBLAZER‐ALZ; NCT03367403), and TB2 (N = 1165; TRAILBLAZER‐ALZ 2; NCT04437511). Images were assessed using visual and quantitative approaches to establish amyloid (A+) and tau (T+) positivity, as well as a combination method (tauVQ) to establish T+. Associations between global amyloid and tau were evaluated with positive and negative predictive values (PPV, NPV) and likelihood ratios (LR+, LR–). Predictive values within subgroups according to ethnicity, race, cognitive score, age, and sex were also evaluated. The relationship between regional tau (four target and two reference regions were tested) and global amyloid was investigated in A05 participant scans using receiver‐operating characteristic (ROC) curves. RESULTS PPV for amyloid positivity was ≥93% for all three trials using various A+ and T+ definitions, including visual, quantitative, and combination methods. Population characteristics did not have an impact on A+ predictability. Regional analyses (early tau (Eτ) volume of interest (VOI), temporal, parietal, frontal) revealed significant area under the ROC curve in Eτ VOI compared to frontal region, regardless of reference region and consistent among visual and quantitative A+ definitions (p < 0.001). DISCUSSION These findings suggest that a positive tau PET scan is associated (≥93%) with amyloid positivity in individuals with early symptomatic AD, with the potential benefits of reducing clinical trial and health care expenses, radiation exposure, and participant time. Highlights Positron emission tomography (PET) evaluates candidates for Alzheimer's disease (AD) research. A positive tau PET scan is associated (≥93%) with amyloid positivity. A positive amyloid PET is not necessarily associated with tau positivity. Tau PET could be the sole diagnostic tool to confirm candidates for AD trials

    Effectiveness of Florbetapir PET Imaging in Changing Patient Management

    No full text
    Aims: To evaluate the impact of amyloid PET imaging on diagnosis and patient management in a multicenter, randomized, controlled study. Methods: Physicians identified patients seeking a diagnosis for mild cognitive impairment or dementia, possibly due to Alzheimer disease (AD), and recorded a working diagnosis and a management plan. The patients underwent florbetapir PET scanning and were randomized to either immediate or delayed (1-year) feedback regarding amyloid status. At the 3-month visit, the physician updated the diagnosis and recorded a summary of the actual patient management since the post-scan visit. The study examined the impact of immediate versus delayed feedback on patient diagnosis/management at 3 and 12 months. Results: A total of 618 subjects were randomized (1:1) to immediate or delayed feedback arms, and 602 subjects completed the 3-month primary endpoint visit. A higher proportion of patients in the immediate feedback arm showed a change in diagnosis compared to the controls (32.6 vs. 6.4%; p = 0.0001). Similarly, a higher proportion of patients receiving immediate feedback had a change in management plan (68 vs. 55.5%; p < 0.002), mainly driven by changes in AD medication. Specifically, acetylcholinesterase inhibitors were prescribed to 67% of the amyloid-positive and 27% of the amyloid-negative subjects in the information group compared with 56 and 43%, respectively, in the control group (p < 0.0001). These between-group differences persisted until the 12-month visit. Conclusion: Knowledge of the amyloid status affects the diagnosis and alters patient management

    Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: A prospective cohort study

    No full text
    Background: Results of previous studies have shown associations between PET imaging of amyloid plaques and amyloid-β pathology measured at autopsy. However, these studies were small and not designed to prospectively measure sensitivity or specificity of amyloid PET imaging against a reference standard. We therefore prospectively compared the sensitivity and specificity of amyloid PET imaging with neuropathology at autopsy. Methods: This study was an extension of our previous imaging-to-autopsy study of participants recruited at 22 centres in the USA who had a life expectancy of less than 6 months at enrolment. Participants had autopsy within 2 years of PET imaging with florbetapir (18F). For one of the primary analyses, the interpretation of the florbetapir scans (majority interpretation of five nuclear medicine physicians, who classified each scan as amyloid positive or amyloid negative) was compared with amyloid pathology (assessed according to the Consortium to Establish a Registry for Alzheimer\u27s Disease standards, and classed as amyloid positive for moderate or frequent plaques or amyloid negative for no or sparse plaques); correlation of the image analysis results with amyloid burden was tested as a coprimary endpoint. Correlation, sensitivity, and specificity analyses were also done in the subset of participants who had autopsy within 1 year of imaging as secondary endpoints. The study is registered with ClinicalTrials.gov, number NCT 01447719 (original study NCT 00857415). Findings: We included 59 participants (aged 47-103 years; cognitive status ranging from normal to advanced dementia). The sensitivity and specificity of florbetapir PET imaging for detection of moderate to frequent plaques were 92% (36 of 39; 95% CI 78-98) and 100% (20 of 20; 80-100%), respectively, in people who had autopsy within 2 years of PET imaging, and 96% (27 of 28; 80-100%) and 100% (18 of 18; 78-100%), respectively, for those who had autopsy within 1 year. Amyloid assessed semiquantitatively with florbetapir PET was correlated with the post-mortem amyloid burden in the participants who had an autopsy within 2 years (Spearman ρ=0·76; p\u3c0·0001) and within 12 months between imaging and autopsy (0·79; p\u3c0·0001). Interpretation: The results of this study validate the binary visual reading method approved in the USA for clinical use with florbetapir and suggest that florbetapir could be used to distinguish individuals with no or sparse amyloid plaques from those with moderate to frequent plaques. Additional research is needed to understand the prognostic implications of moderate to frequent plaque density. Funding: Avid Radiopharmaceuticals. © 2012 Elsevier Ltd
    corecore