42 research outputs found

    Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Get PDF
    BACKGROUND: Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. METHODS: In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. RESULTS: Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. CONCLUSION: These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

    MICROEMULSION-BASED HYDROGEL FOR TOPICAL DELIVERY OF INDOMETHACIN

    Get PDF
    Objective: The present study aims to develop and characterize microemulsion from herbal infused oil of Zingiber cassumunar (HO) and microemulsion-based hydrogel (MBH) containing indomethacin. The release patterns of indomethacin from MBH were also investigated.Methods: HO was produced by hot extraction of Z. cassumunar rhizome in coconut oil, and characterized for acid value, iodine value, and saponification value. The cytotoxicity of HO on human peripheral blood mononucleared cells (PBMCs) was also investigated. Pseudoternary phase diagram was constructed to study suitable compositions of microemulsion containing HO, oleic acid, Triton X-114, propan-2-ol, and water. Indomethacin was then incorporated into the microemulsion and finally blended with gel base (2% Carbopol 940 or 3% sodium carboxymethylcellulose) to produce MBH. The indomethacin MBH was characterized for appearance, pH, viscosity, and in vitro release characteristics.Results: HO exhibited an acid value of 0.203 ± 0.004 mg of KOH/g, iodine value of 7.39 ± 0.15 g of I2/100 g, and saponification value of 265.4 ± 7.3 mg of KOH/g with no cytotoxic effect on human PBMCs. The microemulsion region in the pseudoternary phase diagram of HO, oleic acid, Triton X-114, propan-2-ol, and water was 45.25%. Six microemulsions (ME1– ME6) containing 10% of HO and oleic acid mixture (1:1) as the oil phase and Triton X-114 and propan-2-ol (3:2) as surfactant mixture were formulated and characterized. The droplet size was in the range of 26 to 32 nm with polydispersity index less than 0.3. They showed a Newtonian flow behavior with the viscosity ranging from 15.12 ± 0.15 to 16.78 ± 0.12 Pas. The microemulsion was incorporated into hydrogel using 3% sodium carboxymethylcellulose or 2% Carbopol 940. Only ME1 – ME3 gave clear MBH; therefore, they were studied in the in vitro release of indomethacin, and the results indicated the sustained-release characteristic fitted the Higuchi model.Conclusion: The topical MBH, containing microemulsion of HO, oleic acid, Triton X-114, propan-2-ol and water, might be a promising approach for sustained transdermal delivery of poor water-soluble compounds, including indomethacin.Â

    Down-regulatory mechanism of mammea E/BB from Mammea siamensis seed extract on Wilms' Tumor 1 expression in K562 cells.

    Get PDF
    BackgroundWilms' tumor 1 (WT1) is a biological marker for predicting leukemia progression. In this study, mammea E/BB, an active compound from Saraphi (Mammea siamensis) seed extract was examined for its effect on down-regulatory mechanism of WT1 gene expression, WT1 protein and mRNA stability, and cell proliferation in K562 cell line.MethodsM. siamensis seeds were obtained from the region of Chiang Mai (North of Thailand). Mammea E/BB was extracted from seeds of M. siamensis. WT1 protein expression and stability were evaluated by Western blot analysis. WT1 mRNA stability was assessed by qRT-PCR. WT1-DNA binding and WT1 promoter activity were assayed by ChIP assay and luciferase-reporter assay, respectively. Cell cycle arrest was studied by flow cytometry.ResultsTreatment with mammea E/BB led to down-regulation of WT1 expression. The suppression of WT1 expression did not involve protein and mRNA degradation. Rather, WT1 protein was down-regulated through disruption of transcriptional auto-regulation of the WT1 gene. Mammea E/BB inhibited WT1-DNA binding at the WT1 promoter and decreased luciferase activity. It also disrupted c-Fos/AP-1 binding to the WT1 promoter via ERK1/2 signaling pathway and induced S phase cell cycle arrest in K562 cells.ConclusionMammea E/BB had pleotropic effects on kinase signaling pathways, resulting in inhibition of leukemia cell proliferation

    Preparation of Lipid Nanoemulsions Incorporating Curcumin for Cancer Therapy

    Get PDF
    The aim of this study was to develop a new formulation of a curcumin lipid nanoemulsion having the smallest particle size, the highest loading, and a good physical stability for cancer chemotherapy. Curcumin lipid nanoemulsions were prepared by a modified thin-film hydration method followed by sonication. Soybean oil, hydrogenated L-α-phosphatidylcholine from egg yolk, and cosurfactants were used to formulate the emulsions. The resultant nanoemulsions showed mean particle diameter of 47–55 nm, could incorporate 23–28 mg curcumin per 30 mL, and were stable in particle size for 60 days at 4°C. The cytotoxicity studies of curucumin solution and curcumin-loaded nanoemulsion using B16F10 and leukemic cell lines showed IC50 values ranging from 3.5 to 30.1 and 22.2 to 53.7 μM, respectively. These results demonstrated the successful incorporation of curcumin into lipid nanoemulsion particles with small particle size, high loading capacity, good physical stability, and preserved cytotoxicity

    EFFECT OF THAI SARAPHI FLOWER EXTRACTS ON WT1 AND BCR/ABL PROTEIN EXPRESSION IN LEUKEMIC CELL LINES

    Get PDF
    Background: Saraphi (Mammea siamensis) is a Thai traditional herb. In this study, the cytotoxic effects of crude ethanolic and fractional extracts including hexane, ethyl acetate, and methanol fractions from M. siamensis flowers were investigated in order to determine their effect on WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. Materials and Methods: The flowers of M. siamensis were extracted using ethanol. The ethanol flower extract was further fractionated with hexane, ethyl acetate, and methanol. Cytotoxic effects were measured by the MTT assay. Bcr/Abl and WT1 protein levels after treatments were determined by Western blotting. The total cell number was determined via the typan blue exclusion method. Results: The hexane fraction showed the strongest cytotoxic activity on Molt4 and K562 cells, with IC50 values of 2.6 and 77.6 μg/ml, respectively. The hexane extract decreased Bcr/Abl protein expression in K562 cells by 74.6% and WT1 protein expressions in Molt4 and K562 cells by 68.4 and 72.1%, respectively. Total cell numbers were decreased by 66.2 and 48.7% in Molt4 and K562 cells, respectively. Mammea E/BB (main active compound) significantly decreased both Bcr/Abl and WT1protein expressions by 75 and 49.5%, respectively when compared to vehicle control. Conclusion: The hexane fraction from M. siamensis flowers inhibited cell proliferation via the suppression of WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The active compound may be mammea E/BB. Extracts from M. siamensis flowers show promise as naturally occurring anti-cancer drugs

    LFA-1 on Leukemic Cells as a Target for Therapy or Drug Delivery

    Get PDF
    Leukemia therapeutics are aiming for improved efficacy by targeting molecular markers differentially expressed on cancerous cells. Lymphocyte function-associated antigen-1 (LFA-1) expression on various types of leukemia has been well studied. Here, the role and expression of LFA-1 on leukemic cells and the possibility of using this integrin as a target for drug delivery is reviewed. To support this rationale, experimental results were also included where cIBR, a cyclic peptide derived from a binding site of LFA-1, was conjugated to the surface of polymeric nanoparticles and used as a targeting ligand. These studies revealed a correlation of LFA-1 expression level on leukemic cell lines and binding and internalization of cIBR-NPs suggesting a differential binding and internalization of cIBR-NPs to leukemic cells overexpressing LFA-1. Nanoparticles conjugated with a cyclic peptide against an accessible molecular marker of disease hold promise as a selective drug delivery system for leukemia treatment

    Doxorubicin-Loaded Polymeric Micelles Conjugated with CKR- and EVQ-FLT3 Peptides for Cytotoxicity in Leukemic Stem Cells

    Get PDF
    Doxorubicin (Dox) is the standard chemotherapeutic agent for acute myeloblastic leukemia (AML) treatment. However, 40% of Dox-treated AML cases relapsed due to the presence of leukemic stem cells (LSCs). Thus, poloxamer 407 and CKR- and EVQ-FLT3 peptides were used to formulate Dox-micelles (DMs) and DM conjugated with peptides (CKR and EVQ) for improving AML-LSC treatment. Results indicated that DMs with a weight ratio of Dox to P407 of 1:200 had a particle size of 23.3 ± 1.3 nm with a high percentage of Dox entrapment. They were able to prolong drug release and maintain physicochemical stability. Following effective DM preparation, P407 was modified and conjugated with FLT3 peptides, CKR and EVQ to formulate DM-CKR, DM-EVQ, and DM-CKR+DM-EVQ. Freshly synthesized DMs displaying FLT3 peptides showed particle sizes smaller than 50 nm and a high drug entrapment level, comparable with DMs. DM-CKR+DM-EVQ was considerably more toxic to KG-1a (AML LSC-like cell model) than Dox-HCl. These FLT3-targeted DMs could increase drug uptake and induce apoptosis induction. Due to an increase in micelle-LSC binding and uptake, DMs displaying both peptides tended to improve the potency of Dox compared to a single peptide-coupled micelle

    A Novel Drug Modulator Diarylheptanoid (trans-1,7-Diphenyl-5-hydroxy-1-heptene) from Curcuma comosa Rhizomes for P-glycoprotein Function and Apoptosis Induction in K652/ADR Leukemic Cells

    Get PDF
    Curcuma comosa has been used in traditional Thai medicine to treat menstrual cycle-related symptoms in women. This study aims to evaluate the diarylheptanoid drug modulator, trans-1,7-diphenyl-5-hydroxy-1-heptene (DHH), in drug-resistant K562/ADR human leukemic cells. This compound was studied due to its effects on cell cytotoxicity, multidrug resistance (MDR) phenotype, P-glycoprotein (P-gp) expression, and P-gp function. We show that DHH itself is cytotoxic towards K562/ADR cells. However, DHH did not impact P-gp expression. The impact of DHH on the MDR phenotype in the K562/ADR cells was determined by co-treatment of cells with doxorubicin (Dox) and DHH using an MTT assay. The results showed that the DHH changed the MDR phenotype in the K562/ADR cells by decreasing the IC50 of Dox from 51.6 to 18.2 µM. Treating the cells with a nontoxic dose of DHH increased their sensitivity to Dox in P-gp expressing drug-resistant cells. The kinetics of P-gp mediated efflux of pirarubicin (THP) was used to monitor the P-gp function. DHH was shown to suppress THP efflux and resulted in enhanced apoptosis in the K562/ADR cells. These results demonstrate that DHH is a novel drug modulator of P-gp function and induces drug accumulation in the Dox-resistant K562 leukemic cell line

    Suppression of inflammation-induced lung cancer cells proliferation and metastasis by exiguaflavanone A and exiguaflavanone B from Sophora exigua root extract through NLRP3 inflammasome pathway inhibition

    Get PDF
    Objective: Non-small cell lung cancer (NSCLC) is recognized for its aggressive nature and propensity for high rates of metastasis. The NLRP3 inflammasome pathway plays a vital role in the progression of NSCLC. This study aimed to investigate the effects of S. exigua extract and its active compounds on NLRP3 regulation in NSCLC using an in vitro model.Methods:S. exigua was extracted using hexane, ethyl acetate and ethanol to obtain S. exigua hexane fraction (SE-Hex), S. exigua ethyl acetate fraction (SE-EA), and S. exigua ethanol fraction (SE-EtOH) respectively. The active compounds were identified using column chromatography and NMR analysis. A549 cells were primed with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) for activated NLRP3 inflammasome. The anti-inflammatory properties were determined using ELISA assay. The anti-proliferation and anti-metastasis properties against LPS-ATP-induced A549 cells were determined by colony formation, cell cycle, wound healing, and trans-well migration and invasion assays. The inflammatory gene expressions and molecular mechanism were determined using RT-qPCR and Western blot analysis, respectively.Results: SE-EA exhibited the greatest anti-inflammation properties compared with other two fractions as evidenced by the significant inhibition of IL-1β, IL-18, and IL-6, cytokine productions from LPS-ATP-induced A549 cells in a dose-dependent manner (p < 0.05). The analysis of active compounds revealed exiguaflavanone A (EGF-A) and exiguaflavanone B (EGF-B) as the major compounds present in SE-EA. Then, SE-EA and its major compound were investigated for the anti-proliferation and anti-metastasis properties. It was found that SE-EA, EGF-A, and EGF-B could inhibit the proliferation of LPS-ATP-induced A549 cells through cell cycle arrest induction at the G0/G1 phase and reducing the expression of cell cycle regulator proteins. Furthermore, SE-EA and its major compounds dose-dependently suppressed migration and invasion of LPS-ATP-induced A549 cells. At the molecular level, SE-EA, EGF-A, and EGF-B significantly downregulated the mRNA expression of IL-1β, IL-18, IL-6, and NLRP3 in LPS-ATP-induced A549 cells. Regarding the mechanistic study, SE-EA, EGF-A, and EGF-B inhibited NLRP3 inflammasome activation through suppressing NLRP3, ASC, pro-caspase-1(p50 form), and cleaved-caspase-1(p20 form) expressions.Conclusion: Targeting NLRP3 inflammasome pathway holds promise as a therapeutic approach to counteract pro-tumorigenic inflammation and develop novel treatments for NSCLC

    Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    No full text
    Abstract Background Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.</p
    corecore