9,873 research outputs found

    On the behavior of clamped plates under large compression

    Get PDF
    We determine the asymptotic behavior of eigenvalues of clamped plates under large compression by relating this problem to eigenvalues of the Laplacian with Robin boundary conditions. Using the method of fundamental solutions, we then carry out a numerical study of the extremal domains for the first eigenvalue, from which we see that these depend on the value of the compression, and start developing a boundary structure as this parameter is increased. The corresponding number of nodal domains of the first eigenfunction of the extremal domain also increases with the compression.This work was partially supported by the Funda ̧c ̃ao para a Ciˆencia e a Tecnologia(Portugal) through the program “Investigador FCT” with reference IF/00177/2013 and the projectExtremal spectral quantities and related problems(PTDC/MAT-CAL/4334/2014).info:eu-repo/semantics/publishedVersio

    Spontaneous formation of domain wall lattices in two spatial dimensions

    Full text link
    We show that the process of spontaneous symmetry breaking can trap a field theoretic system in a highly non-trivial state containing a lattice of domain walls. In one large compact space dimension, a lattice is inevitably formed. In two dimensions, the probability of lattice formation depends on the ratio of sizes L_x, L_y of the spatial dimensions. We find that a lattice can form even if R=L_y/L_x is of order unity. We numerically determine the number of walls in the lattice as a function of L_x and L_y.Comment: 6 pages, 6 figures. Background material added and minor corrections included. Final version to be published in Phys. Rev.

    The Thermodynamics of Cosmic String densities in U(1) Scalar Field Theory

    Get PDF
    We present a full characterization of the phase transition in U(1) scalar field theory and of the associated vortex string thermodynamics in 3D. We show that phase transitions in the string densities exist and measure their critical exponents, both for the long string and the short loops. Evidence for a natural separation between these two string populations is presented. In particular our results strongly indicate that an infinite string population will only exist above the critical temperature. Canonical initial conditions for cosmic string evolution are show to correspond to the infinite temperature limit of the theory.Comment: 4 pages, 4 figures, RevTe

    Kinky Brane Worlds

    Get PDF
    We present a toy model for five-dimensional heterotic M-theory where bulk three-branes, originating in 11 dimensions from M five-branes, are modelled as kink solutions of a bulk scalar field theory. It is shown that the vacua of this defect model correspond to a class of topologically distinct M-theory compactifications. Topology change can then be analysed by studying the time evolution of the defect model. In the context of a four-dimensional effective theory, we study in detail the simplest such process, that is the time evolution of a kink and its collision with a boundary. We find that the kink is generically absorbed by the boundary thereby changing the boundary charge. This opens up the possibility of exploring the relation between more complicated defect configurations and the topology of brane-world models.Comment: 31 pages, Latex, 6 eps-figure

    The role of dissipation in biasing the vacuum selection in quantum field theory at finite temperature

    Full text link
    We study the symmetry breaking pattern of an O(4) symmetric model of scalar fields, with both charged and neutral fields, interacting with a photon bath. Nagasawa and Brandenberger argued that in favourable circumstances the vacuum manifold would be reduced from S^3 to S^1. Here it is shown that a selective condensation of the neutral fields, that are not directly coupled to photons, can be achieved in the presence of a minimal ``external'' dissipation, i.e. not related to interactions with a bath. This should be relevant in the early universe or in heavy-ion collisions where dissipation occurs due to expansion.Comment: Final version to appear in Phys. Rev. D, 2 figures added, 2 new sub-section

    Predicting the critical density of topological defects in O(N) scalar field theories

    Get PDF
    O(N) symmetric λϕ4\lambda \phi^4 field theories describe many critical phenomena in the laboratory and in the early Universe. Given N and D≀3D\leq 3, the dimension of space, these models exhibit topological defect classical solutions that in some cases fully determine their critical behavior. For N=2, D=3 it has been observed that the defect density is seemingly a universal quantity at T_c. We prove this conjecture and show how to predict its value based on the universal critical exponents of the field theory. Analogously, for general N and D we predict the universal critical densities of domain walls and monopoles, for which no detailed thermodynamic study exists. This procedure can also be inverted, producing an algorithm for generating typical defect networks at criticality, in contrast to the canonical procedure, which applies only in the unphysical limit of infinite temperature.Comment: 4 pages, 3 figures, uses RevTex, typos in Eq.(11) and (14) correcte

    Repair in traumatic ascending aortic rupture and valve insufficiency

    Get PDF
    An 18-year-old patient who had chronic traumatic ascending aortic lesion and valve insufficiency, with severe LV dysfunction, was treated by repair of the aortic wall without prosthesis and of the aortic valve by a gluteraldehyde-treated autologous pericardial patch. The patient had an uneventful recovery and minimal residual aortic regurgitation at one-month echocardiographic follow-up. Conservative surgery of these lesions is feasible, with good results, in some cases
    • 

    corecore