1,782 research outputs found

    The Thermodynamics of Cosmic String densities in U(1) Scalar Field Theory

    Get PDF
    We present a full characterization of the phase transition in U(1) scalar field theory and of the associated vortex string thermodynamics in 3D. We show that phase transitions in the string densities exist and measure their critical exponents, both for the long string and the short loops. Evidence for a natural separation between these two string populations is presented. In particular our results strongly indicate that an infinite string population will only exist above the critical temperature. Canonical initial conditions for cosmic string evolution are show to correspond to the infinite temperature limit of the theory.Comment: 4 pages, 4 figures, RevTe

    Kinky Brane Worlds

    Get PDF
    We present a toy model for five-dimensional heterotic M-theory where bulk three-branes, originating in 11 dimensions from M five-branes, are modelled as kink solutions of a bulk scalar field theory. It is shown that the vacua of this defect model correspond to a class of topologically distinct M-theory compactifications. Topology change can then be analysed by studying the time evolution of the defect model. In the context of a four-dimensional effective theory, we study in detail the simplest such process, that is the time evolution of a kink and its collision with a boundary. We find that the kink is generically absorbed by the boundary thereby changing the boundary charge. This opens up the possibility of exploring the relation between more complicated defect configurations and the topology of brane-world models.Comment: 31 pages, Latex, 6 eps-figure

    Kink-boundary collisions in a two dimensional scalar field theory

    Get PDF
    In a two-dimensional toy model, motivated from five-dimensional heterotic M-theory, we study the collision of scalar field kinks with boundaries. By numerical simulation of the full two-dimensional theory, we find that the kink is always inelastically reflected with a model-independent fraction of its kinetic energy converted into radiation. We show that the reflection can be analytically understood as a fluctuation around the scalar field vacuum. This picture suggests the possibility of spontaneous emission of kinks from the boundary due to small perturbations in the bulk. We verify this picture numerically by showing that the radiation emitted from the collision of an initial single kink eventually leads to a bulk populated by many kinks. Consequently, processes changing the boundary charges are practically unavoidable in this system. We speculate that the system has a universal final state consisting of a stack of kinks, their number being determined by the initial energy

    Systematic Review of Laser and Other Light Therapy for the Management of Oral Mucositis in Cancer Patients

    Get PDF
    Background The aim of this study was to review the available literature and define clinical practice guidelines for the use of laser and other light therapies for the prevention and treatment of oral mucositis. Methods A systematic review was conducted by the Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology. The body of evidence for each intervention, in each cancer treatment setting, was assigned an evidence level. Based onthe evidence level, one of the following three guideline determinations was possible: recommendation, suggestion, and no guideline possible. Results A new recommendation was made for low-level laser (wavelength at 650 nm, power of 40 mW, and each square centimeter treated with the required time to a tissue energy dose of 2 J/cm2 (2 s/point)) for the prevention of oral mucositis in adult patients receiving hematopoietic stem cell transplantation conditioned with high-dose chemotherapy, with or without total body irradiation. A new suggestion was made for low-level laser (wavelength around 632.8 nm) for the prevention of oral mucositis in patients undergoing radiotherapy, without concomitant chemotherapy, for head and neck cancer. No guideline was possible in other populations and for other light sources due to insufficient evidence. Conclusions The increasing evidence in favor of low-level laser therapy allowed for the development of two new guidelines supporting this modality in the populations listed above. Evidence for other populations was also generally encouraging over a range of wavelengths and intensities. However, additional well-designed research is needed to evaluate the efficacy of laser and other light therapies in various cancer treatment settings

    Re-structuring of marine communities exposed to environmental change

    Get PDF
    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research

    Sperm whale codas may encode individuality as well as clan identity

    Get PDF
    The research was funded by the Danish Research Council; the Carlsberg Foundation; Fundação para a Ciência e a Tecnologia (FCT); Fundo Regional da Ciência, Tecnologia (FRCT) through research projects TRACE-PTDC/MAR/74071/2006 and MAPCET-M2.1.2/F/012/2011 [Fundo Europeu de Desenvolvimento Regional, the Competitiveness Factors Operational (COMPETE), Quadro de Referência Estratégico Nacional (QREN) European Social Fund, and Proconvergencia Açores/European Union Program]; Aarhus University; Woods Hole Oceanographic Institution; University of Southern Denmark and University of La Laguna. We acknowledge funds provided by FCT to MARE – Marine and Environmental Sciences Centre (UID/MAR/04292/2013) and Instituto do Mar at University of the Azores and by the FRCT – Government of the Azores pluriannual funding. C.O. was funded by FCT (SFRH/BD/37668/2007). M.A.S. was supported by an FCT postdoctoral grant (SFRH/BPD/29841/2006) and is currently supported by POPH, QREN European Social Fund and the Portuguese Ministry for Science and Education, through an FCT Investigator grant. M.J. is supported by the Marine Alliance for Science and Technology Scotland (MASTS) and a Marie Curie Career Integration Grant. D.M.W. was funded by a Ph.D. stipend from the Oticon Foundation, Denmark.Sperm whales produce codas for communication that can be grouped into different types according to their temporal patterns. Codas have led researchers to propose that sperm whales belong to distinct cultural clans, but it is presently unclear if they also convey individual information. Coda clicks comprise a series of pulses and the delay between pulses is a function of organ size, and therefore body size, and so is one potential source of individual information. Another potential individual-specific parameter could be the inter-click intervals within codas. To test whether these parameters provide reliable individual cues, stereo-hydrophone acoustic tags (Dtags) were attached to five sperm whales of the Azores, recording a total of 802 codas. A discriminant function analysis was used to distinguish 288 5 Regular codas from four of the sperm whales and 183 3 Regular codas from two sperm whales. The results suggest that codas have consistent individual features in their inter-click intervals and inter-pulse intervals which may contribute to individual identification. Additionally, two whales produced different coda types in distinct foraging dive phases. Codas may therefore be used by sperm whales to convey information of identity as well as activity within a social group to a larger extent than previously assumed.Publisher PDFPeer reviewe

    Numerical simulations of string networks in the Abelian-Higgs model

    Get PDF
    We present the results of a field theory simulation of networks of strings in the Abelian Higgs model. Starting from a random initial configuration we show that the resulting vortex tangle approaches a self-similar regime in which the length density of lines of zeros of ϕ\phi reduces as t2t^{-2}. We demonstrate that the network loses energy directly into scalar and gauge radiation. These results support a recent claim that particle production, and not gravitational radiation, is the dominant energy loss mechanism for cosmic strings. This means that cosmic strings in Grand Unified Theories are severely constrained by high energy cosmic ray fluxes: either they are ruled out, or an implausibly small fraction of their energy ends up in quarks and leptons.Comment: 4pp RevTeX, 3 eps figures, clarifications and new results included, to be published in Phys. Rev. Let

    From Cellulose Dissolution and Regeneration to Added Value Applications — Synergism Between Molecular Understanding and Material Development

    Get PDF
    Modern society is now demanding “greener” materials due to depleting fossil fuels and increasing environmental awareness. In the near future, industries will need to become more resource-conscious by making greater use of available renewable and sustainable raw materials. In this context, agro-forestry and related industries can indeed contribute to solve many resource challenges for society and suppliers in the near future. Thus, cellulose can be predicted to become an important resource for materials due to its abundance and versatility as a biopolymer. Cellulose is found in many different forms and applications. However, the dissolution and regeneration of cellulose are key (and challenging) aspects in many potential applications. This chapter is divided into two parts: (i) achievements in the field of dissolution and regeneration of cellulose including solvents and underlying mechanisms of dissolution; and (ii) state-of-the-art production of value-added materials and their applications including manmade textile fibers, hydrogels, aerogels, and all-cellulose composites, where the latter is given special attention

    Chapter From Cellulose Dissolution and Regeneration to Added Value Applications — Synergism Between Molecular Understanding and Material Development

    Get PDF
    Laser ablation (LA) and spark discharge (SD) techniques are commonly used for nanoparticle (NP) formation. The produced NPs have found numerous applications in such areas as electronics, biomedicine, textile production, etc. Previous studies provide us information about the amount of NPs, their size distribution, and possible applications. On one hand, the main advantage of the LA method is in the possibilities of changing laser parameters and background conditions and to ablate materials with complicated stoichiometry. On the other hand, the major advantage of the SD technique is in the possibility of using several facilities in parallel to increase the yield of nanoparticles. To optimize these processes, we consider different stages involved and analyze the resulting plasma and nanoparticle (NP) parameters. Based on the performed calculations, we analyze nanoparticle properties, such as mean size and mean density. The performed analysis (shows how the experimental conditions are connected with the resulted nanoparticle characteristics in agreement with several previous experiments. Cylindrical plasma column expansion and return are shown to govern primary nanoparticle formation in spark discharge, whereas hemispherical shock describes quite well this process for nanosecond laser ablation at atmospheric pressure. In addition, spark discharge leads to the oscillations in plasma properties, whereas monotonous behavior is characteristic for nanosecond laser ablation. Despite the difference in plasma density and time evolutions calculated for both phenomena, after well-defined delays, similar critical nuclei have been shown to be formed by both techniques. This result is attributed to the fact that whereas larger evaporation rate is typical for nanosecond laser ablation, a mixture of vapor and background gas determines the supersaturation in the case of spark

    The formation of vortex loops (strings) in continuous phase transitions

    Get PDF
    The formation of vortex loops (global cosmic strings) in an O(2) linear sigma model in three spatial dimensions is analyzed numerically. For over-damped Langevin dynamics we find that defect production is suppressed by an interaction between correlated domains that reduces the effective spatial variation of the phase of the order field. The degree of suppression is sensitive to the quench rate. A detailed description of the numerical methods used to analyze the model is also reported.Comment: LaTeX, 17 pages, 6 eps figures 2 references and a footnote adde
    corecore