15 research outputs found

    Tunable coupling scheme for flux qubits at the optimal point

    Full text link
    We discuss a practical design for tunably coupling a pair of flux qubits via the quantum inductance of a third high-frequency qubit. The design is particularly well suited for realizing a recently proposed microwave-induced parametric coupling scheme. This is attractive because the qubits can always remain at their optimal points. Furthermore, we will show that the resulting coupling also has an optimal point where it is insensitive to low-frequency flux noise. This is an important feature for the coherence of coupled qubits. The presented scheme is an experimentally realistic way of carrying out two-qubit gates and should be easily extended to multiqubit systems.Comment: 8 pages, 6 figures, minor change

    Evidence of Cooper pair pumping with combined flux and voltage control

    Get PDF
    We have experimentally demonstrated pumping of Cooper pairs in a single-island mesoscopic structure. The island was connected to leads through SQUID (Superconducting Quantum Interference Device) loops. Synchronized flux and voltage signals were applied whereby the Josephson energies of the SQUIDs and the gate charge were tuned adiabatically. From the current-voltage characteristics one can see that the pumped current increases in 1e steps which is due to quasiparticle poisoning on the measurement time scale, but we argue that the transport of charge is due to Cooper pairs.Comment: 4 page

    Realization of Arbitrary Gates in Holonomic Quantum Computation

    Get PDF
    Among the many proposals for the realization of a quantum computer, holonomic quantum computation (HQC) is distinguished from the rest in that it is geometrical in nature and thus expected to be robust against decoherence. Here we analyze the realization of various quantum gates by solving the inverse problem: Given a unitary matrix, we develop a formalism by which we find loops in the parameter space generating this matrix as a holonomy. We demonstrate for the first time that such a one-qubit gate as the Hadamard gate and such two-qubit gates as the CNOT gate, the SWAP gate and the discrete Fourier transformation can be obtained with a single loop.Comment: 8 pages, 6 figure

    Control of quantum evolution and Josephson junction circuits

    Get PDF
    Ever since Peter Shor's ground-breaking discovery in 1994 of an algorithm capable of factoring large integers on a quantum-mechanical computer exponentially faster than using any known classical method, research on quantum computing has boomed. Quantum information – a unique mixture of computer science, physics and mathematics – has developed into a new branch of information theory. On the experimental side, physicists from many different disciplines including atomic, solid-state and low-temperature physics, as well as optics, are striving today towards a practical quantum computer. All the candidate quantum bit (qubit) technologies have one thing in common: They rely on the controlled time-evolution of a closed quantum system, a seemingly paradoxical task. In this Thesis the temporal control of quantum systems is studied. The topics included can be divided into two according to the type of temporal evolution; geometrical or dynamical. Geometrical realization-independent methods for quantum computing are studied first. Then the study is extended into dynamical quantum computing and the so-called Josephson charge-qubit register is considered as a test bench. Finally, a spin-off application of the geometrical evolution of a Josephson junction system is studied, i.e. Cooper pair pumping. A novel Cooper pair pump, the Cooper pair "sluice", is introduced. The work on quantum computing reported in this Thesis is theoretical while the Cooper pair "sluice" is studied both theoretically and experimentally. Numerical simulations, both sequential and parallel, are used extensively throughout the Thesis. The experiments were carried out under cryogenic mK conditions and the sample fabrication was done using e-beam nanolithography. Because the execution time of a quantum algorithm is always limited by the inevitable process of decoherence, it is important to utilize any measure available for accelerating quantum computations. It is found that practical quantum algorithms could greatly benefit from classical computer-aided optimization. Moreover, it is found that even a modest demonstrator of a full quantum algorithm using Josephson charge qubits is just barely realizable within present-day coherence times. However, the experimental part of this Thesis shows clear evidence of the functioning of the "sluice". While the worldwide effort of improving the coherence properties of qubits is underway, the "sluice" could well find practical use, e.g., in metrology in the foreseeable future.reviewe

    Holonominen kvanttilaskenta

    No full text
    Kvanttitietokoneista on muodostunut intensiivisen tutkimuksen kohde viimeisen vuosikymmenen aikana. Shorin kokonaislukujen tekijöihin jakoon tarkoitetun polynomisessa ajassa toimivan algoritmin keksimisestä 1995 lähtien eri alojen fyysikot ovat alkaneet pohtia kvanttitietokoneen rakentamisen mahdollisuutta. Käytännöllisen kvanttilaskennan vahvuus olisi tiettyjen eksponentiaalisesti vaikeiden ongelmien ratkaisu polynomisessa ajassa. Toimivan kvanttitietokoneen tulisi olla riittävän eristetty kvanttisysteemi, mutta sen kytkentää ympäristöön tulisi silti voida kontrolloida hallitusti. Toimivaa kvanttitietokonetta ei ole vielä rakennettu. Tässä diplomityössä tutkitaan ehdotusta niin kutsutusta holonomisesta kvanttilaskennasta. Holonomisessa kvanttilaskennassa kvanttisysteemin annetaan kehittyä adiabaattisesti samalla kun kontrolliparametreja säädetään siten, että parametriavaruuteen syntyy suljettuja polkuja. Jokainen polku vastaa loogista kvanttioperaatiota. Nämä operaatiot ovat luonteeltaan täysin geometrisia. Tämän vuoksi holonomisen kvanttilaskennan uskotaan sietävän hyvin ympäristön aiheuttamaa dekoherenssia. Tätä skenaariota tutkitaan sekä analyttisesti että numeerisesti käyttäen apuna realisaatiosta riippumatonta mallia. Sopivien polkujen löytämiseksi kehitetään menetelmä, jota testataan käyttäen Fortan 90 -ohjelmia. Tällä numeerisella menetelmällä ratkaistaan monidimensioinen optimointitehtävä, jossa optimoitava funktio on erittäin epätasainen. Lisäksi pohditaan holonomisen kvanttilaskennan kokeellista insinööritoteutusta käyttäen suprajohtavia nanorakenteita ja Josephsonin liitoksia. Kvanttitietokoneesta esitetään mallisuunnitelma. Erityisesti yksittäisen kvanttibitin suunnitelma saattaisi olla kokeellisesti toteutettavissa lähitulevaisuudessa. Myös kvanttibittien kytkemiseksi ehdotetaan mahdollista ratkaisua

    Fast and accurate single-island charge pump: implementation

    Get PDF
    We introduce a Cooper pair “sluice” for the implementation of a frequency-locked current source. The device consists of two mesoscopic SQUIDs and of a single superconducting island with a gate. We demonstrate theoretically that it is possible to obtain a current as high as 0.1 nA at better than ppm accuracy via periodically modulating both the gate charge and the effective Josephson coupling. We find that the device is tolerant against background charge noise and operates well even in a dissipative environment. The effect of the imperfect suppression of the Josephson coupling and the finite operating frequency are also investigated.Peer reviewe
    corecore