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Abstract 
Ever since Peter Shor's ground-breaking discovery in 1994 of an algorithm capable 
of factoring large integers on a quantum-mechanical computer exponentially faster 
than using any known classical method, research on quantum computing has 
boomed. Quantum information – a unique mixture of computer science, physics and 
mathematics – has developed into a new branch of information theory. On the 
experimental side, physicists from many different disciplines including atomic, 
solid-state and low-temperature physics, as well as optics, are striving today 
towards a practical quantum computer. All the candidate quantum bit (qubit) 
technologies have one thing in common: They rely on the controlled time-evolution 
of a closed quantum system, a seemingly paradoxical task. 

In this Thesis the temporal control of quantum systems is studied. The topics 
included can be divided into two according to the type of temporal evolution; 
geometrical or dynamical. Geometrical realization-independent methods for 
quantum computing are studied first. Then the study is extended into dynamical 
quantum computing and the so-called Josephson charge-qubit register is considered 
as a test bench. Finally, a spin-off application of the geometrical evolution of a 
Josephson junction system is studied, i.e. Cooper pair pumping. A novel Cooper pair 
pump, the Cooper pair "sluice", is introduced. 

The work on quantum computing reported in this Thesis is theoretical while the 
Cooper pair "sluice" is studied both theoretically and experimentally. Numerical 
simulations, both sequential and parallel, are used extensively throughout the 
Thesis. The experiments were carried out under cryogenic mK conditions and the 
sample fabrication was done using e-beam nanolithography. 

Because the execution time of a quantum algorithm is always limited by the 
inevitable process of decoherence, it is important to utilize any measure available 
for accelerating quantum computations. It is found that practical quantum 
algorithms could greatly benefit from classical computer-aided optimization. 
Moreover, it is found that even a modest demonstrator of a full quantum algorithm 
using Josephson charge qubits is just barely realizable within present-day 
coherence times. However, the experimental part of this Thesis shows clear 
evidence of the functioning of the "sluice". While the worldwide effort of improving 
the coherence properties of qubits is underway, the "sluice" could well find practical 
use, e.g., in metrology in the foreseeable future. 
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1 Introduction

The temporal control of pure quantum systems has two competing requirements. On one

hand, it is desired that the system under scrutiny is well isolated from its environment

such that the dynamics may be assumed to be unitary. On the other hand, however,

any temporal control implies a time dependence in the Hamiltonian which can only be

an effective approximation and a result of an interaction with the environment such

that the system cannot stay pure indefinitely. Despite this, ever since the emergence of

Shor’s algorithm [1] for factoring large composite integers on a quantum computer [2–5]

the control of the temporal evolution of quantum systems has been a topic of intensive

investigations in physics. The “killer application” of Shor’s algorithm would be the

breaking of the RSA cryptosystem. This could have a remarkable societal impact, and

not necessarily a negative one. To complement the possible emergence of a quantum

computer, quantum cryptography [6] is quite advanced already today. Nevertheless, in

order to perform calculations on a quantum computer, the quantum programmer needs

to have full control over the time-evolution of the system. Moreover, the system needs to

stay pure in the quantum-mechanical sense. It is possible to have quantum control that

does not maintain the purity, and the difference between the control of an impure state

and that of a pure state should be distinguished. Roughly speaking, in the control of

pure states not only the probabilities of different states but also the quantum-mechanical

phases are of interest. This Thesis discusses the control of pure or almost pure quantum

systems.

Quantum control has been studied in the past particularly in the context of nuclear

magnetic resonance (NMR) [7] and, e.g., within molecular dynamics [8]. Quite com-

plicated quantum-computing experiments have also been carried out in NMR with the

most spectacular achievement of a seven-qubit algorithm for factoring the number fif-

teen [9]. The topic of controlling the macroscopic quantum state of a system such as the

nanoelectronic superconducting Cooper pair box [10] is less thoroughly explored. Never-

theless, many steps have been taken in recent years towards an experimental realization

of a Josephson junction based quantum computer. In the experiments by Nakamura et

al. [11–13], the coherent oscillations of a Cooper pair box were first observed. The coher-

ent operation of a coupled Cooper pair box system has also been demonstrated [14, 15].

The dual realization, i.e. the superconducting qubit taking advantage of the flux degree

of freedom [16, 17] has been experimentally verified as well [18, 19]. The macroscopic

coherent behavior of a current-biased large Josephson junction, or the phase qubit, was

recently realized [20,21] with as high as µs coherence times reported in Ref. [20]. Coher-

ence times on the same order were measured in the so-called quantronium circuit [22]

in Saclay. A generalization of the current-biased Josephson junction, the current-biased

SQUID, has also been demonstrated to exhibit coherent behavior [23]. Exotic scenarios,

such as the tetrahedral qubit [24], have been suggested as well. For a review of various

superconducting qubits up to year 2001 see in particular Ref. [25].

The control of adiabatic Cooper pair pumps (CPPs) [26–28] is an instance of the geo-

metrical control of a superconducting system similar to superconducting qubits. While in
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superconducting qubits the control is typically achieved via ordinary dynamical temporal

evolution, the CPPs are controlled adiabatically and cyclically such that no transitions

between states occur. In quantum computing unitary transformations are pursued while

in Cooper pair pumping the time-integral of the current is of interest. It is however

possible, at least in principle, to achieve also general unitary transformations via adia-

batic evolutions as holonomies. This branch of quantum information is called holonomic

quantum computing (HQC) [29]. This Thesis contains examples of both adiabatic and

dynamical quantum computing as well as Cooper pair pumping.

The Overview is organized as follows. Section 2 briefly discusses the unitary evolu-

tion of quantum systems in general and the concept of geometrical evolution in partic-

ular. Section 3 discusses the optimization of quantum algorithms developed in detail in

Publications I–V. Finding unitary operations within a realization-independent model of

holonomic quantum computing (Publications I and II) is studied first. Then the con-

struction of dynamical quantum gates (Publications III–V) for a model identical to a

Cooper pair box array is explored. The highlight of the Section is a theoretical study

of carrying out the simplest nontrivial application of Shor’s factorization algorithm on

Josephson charge qubits. The topic of Section 4 is the adiabatic Cooper pair pump

and especially the so-called Cooper pair “sluice” of Publications VI and VII. This topic

is an illustration of the multitude of present-day applications achievable with almost

identical techniques and structures as those intended to be used in quantum computing.

As explained below this device aimed at a metrological application has many common

features with superconducting qubits and it is further closely related to the concept of

Berry’s phase. Cooper pair pumping has been studied extensively in the past but has

never proven even nearly as accurate as, e.g., single-electron pumping [30]. The sluice is

hoped to bridge this gap. Finally, Section 5 is dedicated to a discussion of the results in

this Thesis.
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2 Controlled Evolution of Quantum Systems

The topics discussed in this Thesis rely on the cyclic control of quantum systems achieved

via manipulating their Hamiltonians in time. That is, in all the applications considered

the parameters of a Hamiltonian go around loops in the parameter space in order to

achieve some desired effect. These controlled cyclic temporal evolutions may roughly

be divided into two main categories: Evolution may be either dynamical or geometri-

cal in nature. Geometrical evolution may arise if the time dependence is slow enough

compared to the relevant energy level separations, i.e., all the controllable parameters

of the Hamiltonian are tuned adiabatically. As the term geometrical implies, only the

geometry of the loop matters and not the speed at which it is traversed. Geometri-

cal, or adiabatic, evolutions may further be divided into Abelian and non-Abelian ones.

Abelian evolutions are commuting, i.e. the order in which the loops are arranged does

not matter, while non-Abelian evolutions do not commute. Abelian evolutions give rise

to Berry’s phase [31] while non-Abelian evolutions may not be characterized by a simple

phase but rather unitary matrices are needed as pointed out by Wilczek and Zee [32].

They are called holonomies.

Decoherence mechanisms and open quantum systems (see, e.g., Ref. [33,34]) are not

considered in detail in this Thesis. Many studies on the decoherence mechanisms in

superconducting circuits exist in the literature, see e.g. Refs. [25, 35–39] and references

therein. In Subsection 2.1 below we give a brief introduction to the concepts of quantum

mechanics that are important for the present work including general dynamical evolu-

tion. We then proceed to discuss geometrical evolution in Subsection 2.2. For a critical

discussion of the fundamentals of quantum mechanics, see e.g. Ref. [40]. Publications

I, II, VI and VII are related to adiabatic evolution while Publications III–V discuss

dynamical evolutions.

2.1 Quantum mechanics and dynamical temporal evolution

The state of a pure quantum system is described by a state vector |ψ〉 in a complete

inner-product space called the Hilbert space. A physical state vector |ψ〉 can always be

normalized to unity 〈ψ|ψ〉 = 1. It may occur, however, that the state is not pure but

rather mixed in which case the system is described with a state operator, or a density

matrix (operator) ρ with Tr ρ = 1. The system is pure if and only if Tr ρ2 = 1 in

which case one may use the state vector to describe the system. Given a state vector,

the corresponding density operator may be formed via ρ = |ψ〉〈ψ|. The state vector

and the state operator are not themselves directly observable quantities in quantum

mechanics. Namely, every observable has an associated self-adjoint operator O = O†. In

the spirit of the statistical interpretation of quantum mechanics, the expectation value

for the kth moment of an observable is given by either 〈Ok〉 = Tr
(
ρOk

)
or alternatively

by 〈Ok〉 = 〈ψ|Ok|ψ〉 in the special case of a pure system. The measurement of the

observable always yields an eigenvalue of the operator O. Even if the state |ψ〉 is not

an eigenstate of O, then owing to the self-adjointness of O we may utilize the complete

11



eigenbasis to expand the state. That is, we may write

|ψ〉 =
∑

α

cα|ψα〉, (1)

where O|ψα〉 = ωα|ψα〉,
∑

α |cα|2 = 1, 〈ψβ|ψα〉 = δαβ and ωα ∈ R. An ideal projective

measurement will result in ωα with the probability |cα|2. Immediately following the

measurement, the system will reside in the state |ψα〉.
For every quantum system, there exists a Hamiltonian operator H which describes the

energy of the system. This dictates the exact form of the temporal evolution. Namely,

the dynamics of an isolated quantum system is governed by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (2)

The corresponding equation for the density operator is

i~ρ̇(t) = [H, ρ]. (3)

For a time-independent Hamiltonian Eq. (2) may be simply solved using operator expo-

nentiation, i.e. |ψ(t1)〉 = exp(−iH(t1 − t0)/~)|ψ(t0)〉. If the Hamiltonian has a general

time dependence H ≡ Hq(t) the situation is considerably more complicated since the

Hamiltonian may have a non-vanishing commutator with itself at different instants of

time. In this work the Hamiltonian is taken to depend on a set of tunable parameters.

These parameters are described by a vector-valued function of time q(t). This vector

naturally contains all the parameters that we have control over. We can, even then, still

formally solve for the time evolution using the time-ordering operator T , which results

in

|ψ(t1)〉 = T exp

(

−i
∫ t1

t0

Hq(t)dt/~

)

|ψ(t0)〉. (4)

In spite of the integral, the above expression does not involve integration in the ordinary

sense but it is rather a product integral. The effect of T is to arrange a sequence of

operators, each of which is associated with an instant in time, such that the operators

associated with earlier times are always to the right from those associated with later

instants. Regardless of the exact details, however, the dynamics of an isolated quantum

system is always unitary. We may write |ψ(t1)〉 = U(t1, t0)|ψ(t0)〉 where in the general

case the unitary operator U(t1, t0) is given by

U(t1, t0) = T exp

(

−i
∫ t1

t0

Hq(t)dt/~

)

. (5)

Due to unitarity, the quantum-temporal evolution of a closed system is always reversible:

U(t1, t0)
−1 = U(t1, t0)

†. The norm is also preserved, i.e.

〈ψ(t1)|ψ(t1)〉 = 〈ψ(t0)|U(t1, t0)
†U(t1, t0)|ψ(t0)〉 = 〈ψ(t0)|ψ(t0)〉 = 1, (6)

which is consistent with the probability interpretation of quantum mechanics. The

unitary temporal evolution of a mixed state may be expressed also very concisely as

ρ(t1) = U(t1, t0)ρ(t0)U(t1, t0)
†.
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Equation (5) is quite general and comprises all forms of unitary evolution, i.e. both

adiabatic and non-adiabatic behaviors. It serves as the natural starting point for numer-

ical calculations. Depending on the application, one either aims at realizing a certain

unitary evolution (quantum computing) or a certain consequence of evolutions (e.g.,

quantum pumping). The unitarity of the temporal evolution only breaks down when

the system in consideration is no longer isolated. The quantum measurement mentioned

briefly above is clearly non-unitary and, as a matter of fact, it is just through interactions

that the actual measurements take place. This brings us to the problem of combining

quantum systems. Two quantum systems with separate Hilbert spaces may be combined

by considering their tensor product. That is, for any |ψ1〉 (ρ1) and |ψ2〉 (ρ2) the com-

bined state is |ψ1〉 ⊗ |ψ2〉 (ρ1 ⊗ ρ2). In the case of finite-dimensional spaces the tensor

product is just the Kronecker product for matrices. The total Hamiltonian is, on the

other hand Htot = H1 ⊗ I + I ⊗ H2. However, it may be that the two systems are

non-isolated such that the total Hamiltonian may not be written as a sum of two terms

each of which acts non-trivially only on the subspace of one of the systems but rather

Htot = H1 ⊗ I + I ⊗H2 + Hint. It may also be the case that two initially separate pure

systems cannot be described by |ψ1〉 ⊗ |ψ2〉. Then the total system is called entangled.

To obtain the state operator for a certain subsystem of a possibly entangled total system

one simply traces over the degrees of freedom of the uninteresting part of the Hilbert

space. That is, if we have two systems 1 and 2, then ρ1 = Tr2ρ is the state operator of

subsystem 1. This partial trace combined with unitary global evolution may result in

non-unitary temporal evolution.

2.2 Geometrical temporal evolution

In the special case when the temporal evolution of a quantum system may be considered

to be adiabatic, Eq. (5) may be further refined. Adiabaticity in quantum mechanics

means that if the quantum system in question, described by some Hamiltonian Hq(t),

is initially in the kth eigenstate of energy, then we may also assume that it stays in the

corresponding kth eigenstate. This is the case when the dynamics is slow compared to

the energy-level separations. Clearly no level crossings can be allowed such that the

ordering of the states is possible and the separations remain nonzero. In this Thesis

we consider only adiabatic systems in the ground state. Thus, for our purposes, the

adiabaticity criterion means that all the related frequencies are much lower than the

resonant frequency between the ground state and the first exited state. This resonant

frequency may of course also depend on time, and thus the condition must hold at all

times.

This basic assumption has quite nontrivial consequences [31,32,41]. For our purposes

it is sufficient to concentrate on what happens to the ground state. Let us assume that

the ground state has g degenerate eigenstates denoted by |0α;q〉 (α = 1, ..., g) and that

no level crossings occur at least between the ground state and the higher excited states.

The eigenvalue of the ground state is εq, such that

Hq|0α;q〉 = εq|0α;q〉 (7)

13



and

〈0α;q|0β;q〉 = δαβ. (8)

Moreover, the eigenvectors of the ground-state subspace are also orthogonal to the higher

excited states. Let us assume that the state of the system is initially any one of orthonor-

mal ground states |α;q(t0)〉 and that the system evolves adiabatically over time t ∈ [t0, t1]

and also that the parameters go around a loop such that q(t0) = q(t1). Then we may

write the state of the system |ψα(t)〉 at time t as

|ψα(t)〉 =

g∑

θ=1

Uθα(t, t0)|0θ;q(t)〉 (9)

with some complex coefficients Uβα(t, t0) that must satisfy Uβα(t0, t0) = δβα. Plugging

this into the Schrödinger equation, multiplying from the left by 〈0β;q(t)| and using the

orthonormality of the states yields

dUβα(t, t0)

dt
= −

g
∑

θ=1

〈0β;q(t)| d
dt
|0θ;q(t)〉Uθα(t, t0) − iεq(t)Uβα(t, t0)/~. (10)

This has the solution

U(t, t0) = e
−i
∫

t

t0
εq(τ)dτ/~T exp

(

−
∫ t

t0

A(τ)dτ

)

, (11)

where A(t) is a matrix whose entries Aβα(t) are given by

Aβα(t) = 〈0β;q(t)| d
dt
|0α;q(t)〉. (12)

Neglecting the dynamical phase θdyn = −
∫ t

t0
εq(τ)dτ/~ for now and introducing the

connection matrices Ai whose elements are

Ai;βα = 〈0β;q| ∂
∂qi

|0α;q〉 (13)

allows us to rewrite Eq. (11) at the instant t = t1 as

U(t1, t0) ≡ Uγ = P exp

(

−
∮

γ

Aidq
i

)

, (14)

where γ is the loop around which we traverse. The quantity Aidq
i is sometimes called

the Wilczek-Zee connection one-form. Einstein’s summation convention over all the

components of the control parameter vector, i.e. the index i, is assumed. The path-

ordering operator P is used above. Its operation is similar to that of T .

Now if instead of the state |α;q(t0)〉 we were initially to start from an arbitrary

superposition
∑g

α=1 cα|α;q(t0)〉 then at time t1 the state of the system would be

|ψ(t1)〉 =

g
∑

α=1

cα|ψα(t1)〉 (15)
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or

|ψ(t1)〉 =

g
∑

α,β=1

Uβα(t1, t0)cα|β;q(t1)〉 =

g
∑

α,β=1

(Uγ)βαcα|β;q0〉. (16)

We see form this that Uγ is indeed the unitary matrix that describes how the quantum

state evolves during each loop based at q(t0) = q0. This is called a non-Abelian holonomy

[32,41] in the degenerate case (Publications I and II) and Berry’s phase [31] (Publications

VI and VII) in the nondegenerate case, i.e. Uγ = eiθBerry if g = 1. In the nondegenerate

case we may denote the ground state simply as |0;q〉 and since the path ordering is then

meaningless, Berry’s phase is simply

θBerry = i

∮

γ

〈0;q| ∂
∂qi

|0;q〉dqi = i

∮

γ

〈0;q(t)|∇q|0;q(t)〉 · dq. (17)

Thus, the cyclic quantum evolution of the ground state in the adiabatic limit has two con-

tributions; the more-or-less trivial dynamical factor e−i
∫ t1
t0

εq(t)dt/~ that can be neglected

in e.g. quantum computing applications and the geometrical contribution Uγ . To obtain

some desired holonomic evolution one needs to describe a loop γ in the parameter space

spanned by all the controllable parameters. Whereas in general the speed at which a

loop is traversed plays a role, in the adiabatic evolution only the geometry of the path

(not its parameterization) matters. It may appear at first sight that for a nondegenerate

system in its ground state, Berry’s phase would be meaningless since it only describes a

global phase. This is not the case as will be seen in Section 4 where we discuss Cooper

pair pumps. For universal quantum computation based solely on ground-state adiabatic

control, however, a degenerate system is required.
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3 Optimization of Quantum Algorithms

Quantum computing is potentially a very spectacular application of the temporal control

of quantum systems. Basically any collection of two-state (or more) quantum systems

that can be controlled, and moreover, the couplings of which we have control over, or

can take into account somehow, is a potential quantum computer. Provided that the

quantum system is sufficiently well isolated from its environment, we may assume the

dynamics to be unitary as in the previous Section. However, the parameters of the

Hamiltonian need to be tunable and thus the isolation must not be perfect. In this

Section we shall first introduce the concept of quantum computing. Many excellent

overviews of this subject may be found in the literature, see e.g. Refs. [2–5]. It will turn

out that a quantum algorithm is nothing but a unitary operator. It is programmed by

finding a proper control pulse q(t) and executed by applying the pulse on the quantum

system. In Subsection 3.2 we consider a realization–independent approach for finding

physical implementations of holonomic quantum computations. Subsection 3.3 describes

a similar approach for finding optimized logical dynamical quantum gates on Josephson

charge qubits. All the methods presented rely on intensive numerical optimization. The

key point of this Section is that instead of using sequences of elementary operations, we

pursue a method of finding direct implementations of single and multiple qubit operations

in a single pulse sequence. We demonstrate that it is in practice much more advantageous

to implement a quantum algorithm via first finding, using ordinary computers, a direct

implementation for as large a multiqubit operation as possible and then implementing

this optimized operation on a quantum computer rather than using some limited set of

elementary operations.

3.1 Quantum computing

Quantum computers can solve certain problems that are classically considered to require

exponential resources (time and space) in polynomial time and space. The idea of quan-

tum computing is to take advantage of the global properties of a very high-dimensional

multi-partite Hilbert space. A quantum computer is a quantum system typically con-

sisting of multiple two-state subsystems called quantum bits, or qubits. A prototype

for a qubit is the spin degree of freedom of a spin-1/2 particle. Information is encoded

in the states of the qubits such that one state of the qubit corresponds to the “0” of a

classical digital bit while the other corresponds to “1”. Let us denote the basis states

of the collection of N qubits by |0j〉 and |1j〉 with j ∈ {1, . . . , N}. One often uses the

vector notation

|0j〉 =

(
1

0

)

and |1j〉 =

(
0

1

)

(18)

for these states. If the states of the individual qubits are |ψj〉 with ψj = 0, 1 then the

state of the composite system may be expressed using the tensor product as

|Ψ〉 =

N⊗

j=1

|ψi〉 = |ψN〉 ⊗ . . .⊗ |ψ1〉 = |ψN . . . ψ1〉 , (19)
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where the last form is an often used abbreviation. In the absence of superpositions

the quantum information contained in this quantum register is interpreted just like the

information in a classical bit register; the data is just a binary number. The strength

of a quantum computer, however, emerges from the fact that the quantum register may

evolve into a superposition of all the possible 2N states. That is, if |Ψα〉 is some N -qubit

state corresponding to a binary number, then the state of the quantum computer can be

|Ψ〉 =

2N

∑

α=1

cα|Ψα〉 , (20)

with 〈Ψ|Ψ〉 = 1. The prototype of an entangled superposition is the so-called Bell state

for two qubits

|Ψ〉 =
1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) . (21)

The interpretation of the data contained in this register is entirely non-classical; with

probability one half the bits are either both zeros or ones. Moreover, the measurement of

one of the qubits immediately tells us the result that the measurement of the second qubit

would give. This has some very counterintuitive implications and the interpretation of

this kind of state even confused Einstein [42]. Entangled states, such as the Bell state

above, can be used for so-called (deterministic) quantum teleportation that has been

recently realized using ion traps [43, 44].

The quantum algorithm is nothing but a 2N -dimensional unitary operator of Eq. (5)

which dictates the temporal evolution of the quantum register, i.e.

|Ψ(t1)〉 = U(t1, t0)|Ψ(t0)〉. (22)

The evolution of the quantum computer is governed by the Hamiltonian Hq(t) whose

time-dependence the experimenter must have control over. The control is mediated by

the parameters q(t) and different formal expressions for the algorithm U can be derived

as discussed in the previous Section. Clearly the number of degrees of freedom for the

algorithm is immense; it takes 22N − 1 real numbers to describe the most general kind

of an algorithm while for applications N � 100. Luckily, practical algorithms exist

too. Typically, we would desire the operator U to perform, for instance, the quantum

part of Shor’s algorithm [1] or the Grover search [45] both of which can be carried

out by applying a polynomial number of so-called elementary operations [46]. Shor’s

algorithm can factor large integers in polynomial time, which is otherwise believed to be

exponentially hard, while Grover’s search can be used to carry out a database search of

an unsorted database in time proportional to the square root of the entries in it. The best

known decompositions of arbitrary multiqubit gates have been reported in Refs. [47,48]

but, nevertheless, the number of required gates scales exponentially with the number of

qubits.

The unique property of quantum mechanics that makes quantum computing attrac-

tive is that unitary operator “processes” all orthogonal basis states independently. In

other words, the quantum algorithm may process 2N different inputs at once if the regis-

ter is initialized for instance in an equal superposition. This is sometimes called quantum
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parallelism. The task carried out e.g. in Shor’s algorithm is the evaluation of a certain

modular function, see e.g. Refs. [1, 2] or Paper V. With N ∼ 103 the number of states

is already immense and beyond the capacity of all classical computers. However, after

the unitary temporal evolution one has to measure the state of the system. Each qubit

is found in either the state |0〉 or |1〉. If the state of the register prior to measurement is

|Ψ〉, then the probability of obtaining the result |Ψ̃〉 =
⊗N

j=1 |ψ̃j〉 (ψ̃j = 0 or ψ̃j = 1) is

given by

P (Ψ) = 〈Ψ|Ψ̃〉〈Ψ̃|Ψ〉 = |〈Ψ|Ψ̃〉|2. (23)

This is the tricky part. No matter how many orthogonal basis states have non-vanishing

amplitudes in the superposition, upon measurement only one of them survives. Moreover,

the result is stochastic. The quantum measurement makes it impossible to obtain more

than one output. The trick that can be used then is to further process the information

in the quantum register before measurement and to look for “global” properties in it. In

Shor’s algorithm one is interested in the period of the modular function and luckily the

quantum equivalent of the fast Fourier transform may be carried out efficiently. This

causes the quantum register to form strong interference patterns and upon measurement

it is possible, stochastically, to deduce the period. Thus the true strength of quantum

computing is only unleashed in a certain class of applications in which some well-defined

global property is known.

We list the requirements for practical quantum computing following DiVincenzo [49].

One needs to have:

• a scalable physical system with well characterized qubits

• the ability to initialize the state of the qubits to a simple fiducial state

• long relevant decoherence times, much longer than the gate operation time

• a universal set of quantum gates

• a qubit-specific measurement capability.

All of these points are necessary and it seems that all the existing suggestions for physical

realizations of quantum computing possess strengths in some of these areas but not in

each one of them. In this work we are primarily interested in how to carry out the

unitary transformations, i.e. the quantum gates.

As mentioned above, typically the unitary operator U is decomposed into a sequence

of so-called elementary gates [46] that act non-trivially only on one or two qubits. These

are analogous with the basic logical operations of an ordinary computer. The physical

implementation for these is often found by hand and the Hamiltonian is sometimes even

considered piecewise constant in time. This leads to abrupt switchings in the parameter

sequences which are hard if not impossible to implement. Finite rise and fall times of

real pulses lead to errors [50]. Furthermore, in general only a limited number of logically

different gates are assumed to be available. Thus the logical gate sequences may get

prohibitively long. In the next two subsections methods for finding arbitrary single and
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multiple qubit gates avoiding abrupt switchings are considered. The motivation for this is

that the more complicated gates we may perform in a single step, the more of the valuable

execution time we save. This is extremely important due to the presence of decoherence

which inevitably limits the total execution time of the algorithm. In Subsection 3.2,

methods for finding the adiabatic loop γ in the control-parameter space for any one-qubit

and two-qubit operation for a certain toy model is presented, while in Subsection 3.3

control sequences realizing up to three-qubit operations for Josephson charge qubits are

found. The developments presented here have recently obtained experimental verification

when Nakahara et al. demonstrated [51] the acceleration of the two-qubit Grover search

at best by four times by first optimizing the algorithm and then by carrying it out

experimentally in an NMR setup.

3.2 Adiabatic non-Abelian quantum gates

Holonomic quantum computing (HQC) [29, 52–55] is a subfield of quantum information

processing in which the quantum register is assumed to be fully degenerate and the

quantum control is implemented using Eq. (14). The reason for studying holonomic

quantum computing is that it is hoped to be robust against decoherence due to the

degeneracy of the spectrum. A clear benefit is also the fact that the exact timing of the

pulses is not crucial since the evolution is purely geometrical as long as the adiabaticity

is maintained. Additional features include the absence of unwanted phases on idle qubits

that inevitably accumulate in any scenario in which the logical states are energetically

different.

Thus in HQC each unitary gate is associated with a loop in the parameter space,

and a sequence of loops forms the full quantum algorithm. Holonomic or adiabatic

non-Abelian gates in a three-state model are studied in papers I and II. The results

obtained are quite general and are not limited to any particular physical system. For

various suggestions for the realization of non-Abelian holonomies with Josephson junc-

tion structures, see Refs. [56–58]. Also optical [59] and semiconductor [60] HQC has

been suggested. Berry’s Abelian geometrical phase has been envisaged to be used for

universal quantum computation in superconducting systems by Falci et al. [61], but there

the system under study is not in the ground state such that differences in Berry phases

are of interest and, furthermore, sudden changes in the parameters are also used. In

HQC purely ground state systems and strictly adiabatic control is used.

The problem considered is the following: Given a unitary quantum gate Û , what is

the parameter loop γ that produces Û through Eq. (14), i.e. under which conditions Uγ =

P exp
(

−
∮

γ
Aidq

i
)

equals Û? It is straightforward to solve the direct problem but the

solution of the inverse problem turns out to involve heavy computations. However, this

is clearly the relevant question from the point of view of holonomic quantum computing

since γ is just the experimental control sequence. A possible way of finding a path γ

that realizes Û is to use numerical optimization. Namely, let us define

f(γ) = ‖Û − Uγ‖, (24)
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where ‖ · ‖ is some specified norm. In this Thesis we use the Frobenius norm ‖ · ‖F

defined as ‖A‖F =
√

Tr (A†A). Then finding the minimum of f(γ), which clearly is

equal to zero if a solution to the original problem exists, is equivalent to finding a path γ

that implements Û . In practice, the multidimensional path is conveniently discretized for

instance into polygonal loops, i.e., into loops that have a finite number of vertices between

which one interpolates linearly. Then we are effectively searching for the minimum in a

subspace of all (continuous) loops and the coordinates of the vertices serve as natural

optimization variables. Various numerical algorithms for the minimization are possible,

but the so-called polytope search [62] was found to be particularly successful for the

problem. Exact methods have been studied also for the solution of a similar problem [63].

The functional evaluations for a given polygonal path may easily be carried out by

the discretization of the path and considering the connection coefficients Ai piecewise

constant such that evaluation of Uγ reduce to multiplication of matrix exponentials.

That is, for a discretization γ1, . . . , γn of the loop γ we may write

Uγ ≈ exp(−
∑

i

Ai(γn)δγi
n) · · · exp(−

∑

i

Ai(γ1)δγ
i
1), (25)

where Ai(γk) stands for the ith connection component evaluated at the discretization

point γk and δγj
k is the finite difference of the jth parameter component of the kth

interval. The number of connection components and thus the bounds on the summation

index i depend on the number of controllable parameters. From this discretization it is

clear why expressions of the kind appearing in Eqs. (14) and (5) are sometimes called

product integrals; letting n → ∞ and δγj
k → 0 renders the approximation in Eq. (25)

exact. The matrix exponentials may be either calculated using the Taylor expansion or

the Cayley form, see Paper V. More details of the numerics can be found in publications

I and II. In general, a realization for an arbitrary N -qubit gate is expected to exist if

the number of degrees of freedom in the optimization exceeds the dimensionality of the

Lie algebra u(2N) which is 22N .

Single-qubit gates

To get some concreteness to the problem we consider as an example a case where the indi-

vidual qubits are encoded in the twofold degenerate ground state of a three-dimensional

Hilbert space. We assume that the Hamiltonian is diagonal at the reference point q0

where the holonomy loops are based and the ground state energy is set to zero. Then

the Hamiltonian at this point may be written simply as

Hq0 =





ε 0 0

0 0 0

0 0 0



 , (26)

with ε > 0. We then consider the adiabatic isospectral temporal dependence of the

Hamiltonian to be of the form Hq = WqHq0W
†
q
, where Wq is a unitary transformation

that satisfies Wq0 = I3, where I3 is the 3×3 identity matrix. All the temporal dependence

of the Hamiltonian is encoded in Wq and this dependence is assumed to be adiabatic.
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Figure 1. Loop in the parameter space that yields the gate U =

ei exp
(
iπ
7 σz

)
exp

(
i1
3σy

)
exp(iσz). From Paper I.

A convenient method to parameterize the unitary transformation Wq is to use the so-

called Givens decomposition. It turns out that arbitrary rotations Wq are isomorphic to

the complex projective space [64] CP 2. This manifold may be parameterized using the

four coordinates denoted θi and φi with i = 1, 2 in Papers I and II. The corresponding

Wilczek-Zee matrices Aθi
and Aφi

can be found analytically and this allows one to write

any holonomy on a single qubit as

Uγ = P exp

(

−
∮

γ

2∑

i=1

(Aθi
dθi + Aφi

dφi)

)

. (27)

The numerical calculations were carried using Fortran 90 and the IMSL library. Figure 1

illustrates an example loop in the four-dimensional (θ1, θ2, φ1, φ2)-space for realizing a

particular unitary operation, namely U = ei exp
(
iπ
7
σz

)
exp

(
i1
3
σy

)
exp(iσz). Here σz and

σx are Pauli matrices and q0 = (0, 0, 0, 0)T . Papers I and II report realizations for various

other gates. The conclusion regarding single-qubit gates in the present setting is that

they can all be found with a sufficient amount of flexibility in the paths.

Two-qubit gates

Two-qubit gates may also be found for HQC. To this end a way of coupling the qubits

is desired. We define the two-qubit reference Hamiltonian to be

H2-qubit
q0

= Hq0 ⊗ I3 + I3 ⊗Hq0 . (28)

The most general kind of isospectral rotations for this 9-dimensional Hamiltonian is very

complicated but we shall consider the product of a purely two-qubit rotation and that

of a tensor product of single-qubit rotations, i.e.

Wq = W 2-qubit
q

(W a
q
⊗W b

q
), (29)
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where W a
q

(W b
q
) is the single-qubit rotation of the Hamiltonian of the qubit a (b) identical

to that used in purely single-qubit operations. We take W 2-qubit to be of the form

W 2-qubit = eiξ|11〉〈11|. Thus the rotations of the two-qubit Hamiltonian are parameterized

using the nine parameters (θc
i , φ

c
i , ξ) with i = 1, 2 and c = a, b. Arbitrary two-qubit

quantum gates may be found within this model, and various examples may be found in

papers I and II.

The problem of coupling multiple qubits is difficult in general, but in the case of HQC

it is particularly hard due to the stringent requirement of degeneracy. The coupling

presented here is merely an example, albeit a convenient one.

Length optimization

The motivation for studying holonomic quantum gates numerically is not just the need

to find implementations of arbitrary gates. Namely, it is possible also to optimize with

respect to a more general type of an error functional. Paper II discusses the optimization

of HQC with respect to the length of the path numerically. Recently, however, also the

exact solution of the so-called isoholonomic problem has been provided for an arbitrary

k-dimensional unitary gate within a Hilbert space with a dimension larger than 2k [65].

3.3 Non-adiabatic Josephson charge-qubit gates

The developments presented above in the context of holonomic quantum computation

may easily be generalized also to “ordinary” dynamical quantum computing. The opti-

mization of multiqubit gates for the so-called Josephson charge-qubit model is the topic

of publications III, IV and V. The only practical difference in the numerical optimiza-

tion scheme of the present problem and HQC is the evaluation of the unitary operator.

Whereas Eq. (14) was used above, here we utilize Eq. (5). The evaluation of the unitary

operator was carried out using parallel programming [66]. The motivation is the same

though: It is desired that a more complicated gate could be realized in a single shot

without evoking elementary gates. Josephson charge qubits are discussed in detail for

instance in Refs. [25,67] and Publication V. For an introduction to Cooper pair tunneling

and superconducting circuits see e.g. Refs. [68–70].

Physical model

Consider the Josephson junction circuit shown in Fig. 2. In Fig. 2(a) an individual

Cooper pair box is shown. It consists of a small metallic superconducting island (typi-

cally aluminum cooled to some 20–50 mK) having sub-micron dimensions coupled to a

superconducting lead through a SQUID loop. The SQUID loop consists of Josephson

junctions that are, e.g., formed by an oxide layer between superconducting metallic films.

Cooper pairs may not be found inside the layer but they can have a finite possibility

for tunneling through, provided that the oxide is sufficiently thin and the area of the

junction sufficiently large. The state of a Josephson junction may be described by the

superconducting phase difference φ over it which is just the time-integral of voltage times
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Figure 2. (a) Single Cooper pair box coupled to the environment through

a SQUID. (b) Array of Josephson charge qubits coupled inductively.

2e/~. The potential energy stored in the junction is −EJ cosφ, where EJ is the so-called

Josephson energy. Classically, the current flowing through a “large” Josephson junction

is Ic sinφ where Ic is called the critical current and φ obeys φ̇ = 2eV/~, where V is

the voltage. The critical current is related to the Josephson energy via Ic = (2e/~)EJ.

SQUIDs are used as tunable Josephson junctions. In the case of identical junctions the

Josephson energy term is −EJ cos(πΦ/Φ0) cos(φ), where EJ/2 is the Josephson energy

of an individual junction, Φ0 = h/2e is the flux quantum and Φ is the externally applied

flux through the SQUID loop. The normal-state tunneling resistance RT yields the value

of EJ through the Ambegaokar-Baratoff formula [71] EJ = h∆BCS/8e
2RT, where ∆BCS is

the superconducting gap at zero temperature. A Josephson junction has also a parallel-

plate capacitance (CJ/2 in this case) associated with it, which is typically on the order

of fF. The superconducting island is further coupled to a gate voltage Vg through a gate

capacitance Cg. These capacitances give rise to a typical charging energy for Cooper

pairs EC = 2e2/CΣ, where CΣ = CJ + Cg is the total capacitance of the island. This

charging energy is assumed to be so large that the addition of a single Cooper pair to

the island requires more energy than the thermal motion of the environment, roughly

speaking, may provide. For charge qubits, we also require that EJ < EC.

An individual qubit may be manipulated both through the magnetic flux Φ and

the gate voltage Vg. The logical states of the qubit correspond to zero and one extra

Cooper pair residing on the island, denoted by |0〉 and |1〉 respectively. Since changing

the polarization of the island does not induce any tunneling amplitude but, in contrast,

changes the relative energy of different charge configurations, the diagonal part of the
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two-by-two Hamiltonian for the qubit is controlled through Vg. However, since the

superconducting phase on the island is conjugate to the number of Cooper pairs on the

island, it follows that cos(φ) gives rise to tunneling and thus the magnetic flux controls

the off-diagonal part of the Hamiltonian. Furthermore, Fig. 2(b) illustrates a potential

coupling scheme for the charge qubits in which the boxes are fabricated in parallel with

an inductance L, possibly realized in practice using a large Josephson junction. The

inductor along with the total capacitance of the array of qubits serves as an LC-oscillator

whose presence effectively couples the qubits assuming that the frequency of oscillation

is much higher than the relevant frequencies of the individual qubits. We may write the

Hamiltonian for M qubits (see Paper V and Ref. [25]) as

Hqb =
M∑

i=1

[

−B
i
z

2
σi

z −
Bi

x

2
σi

x

]

−D
M∑

i=1

M∑

j=i+1

Bi
xB

j
xσ

i
y ⊗ σj

y , (30)

where Bi
z = EC(1 − 2ni

g), B
i
x = EJ(Φi) and D = L(πCqb/CJΦ0)

2. We have further

denoted Cqb = CJCg/(CJ + Cg). The index i refers to the ith qubit. Above EJ(Φi) =

EJ cos(πΦi/Φ0) is the effective Josephson energy and ni
g = CgV

i
g is the gate charge. It

is worthwhile to note that this Hamiltonian is only valid near ng = 0.5, i.e. one of the

degeneracy points and if EJ � EC. A particularly convenient property of Eq. (30) is

that the entire Hamiltonian may be set equal to zero, thereby stopping all temporal

evolution. Note that if any two qubits have a non-vanishing tunneling amplitude, they

will be automatically coupled. It is easy to construct any single-qubit gate within this

model on qubit j by setting Bi
x = Bi

z = 0 for i 6= j and by manipulating Bj
x and Bj

z,

see Paper V. Using arbitrary one-qubit operations along with almost any nontrivial two-

qubit gate [46] one may construct any multiqubit operation. This would not, however,

by any means lead to an optimal implementation.

Optimization

In Publication III, the general problem of finding multiqubit gates for the present Hamil-

tonian is considered. The concept is further developed in Publication IV where particular

attention is paid to accelerating algorithms using three-qubit gates. Paper V considers,

as an example, the execution of Shor’s algorithm on Josephson charge qubits using the

optimization method. Just like within HQC, it is possible to associate a loop in the

parameter space with every unitary operation. The parameter vector for a k-qubit op-

eration now assumes the form

q(t) =
[
B1

z (t) . . . Bk
z (t) B1

x(t) . . . Bk
x(t)

]T
. (31)

We may take the origin, where Hqb = 0, as the starting point for all quantum-control

operations. Then, exactly like in the case of HQC, we may assume that the operations

are polygons in the parameter space. Only now the natural parameterization for loops

is given by time, and also the speed at which the loops are traversed of course matters.

However, we may fix the duration of each edge of the polygon and thus a polygon for k

qubits and with l + 1 vertices has 2l × k degrees of freedom. It is reasonable to require
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Figure 3. Illustration of the strength of the method in the case of the

Fredkin gate. In (a) and (c), the quantum-circuit notation (see text) for

the single-shot and decomposed Fredkin gate is shown. Subfigures (b) and

(d) show the corresponding parameter pulses. The solid line represents

Bi
z while the dashed line represents B i

x. The resulting direct three-qubit

implementation is in this case almost three times faster.

that 2lk ≥ 22k − 1 in order to achieve1 the whole SU(2k). The gates are again found by

minimizing f(γ) but now the evaluation of Uγ is carried out by discretizing the loop γ

into a finite set of points γ1, . . . , γn (typically n = 102–104) in the 2k-dimensional space

and since the total time is fixed, we also can fix the time difference ∆t between the points

and write

Uγ ≈ exp(−iHqb(γn)∆t) . . . exp(−iHqb(γ1)∆t). (32)

It is easy to see from the above expression that one can readily divide the evaluation of

the unitary operation into smaller sections of the full loop γ and delegate each subtask

to a separate processor. Thus the evaluation of Uγ is almost trivially parallelized, which

allows for very efficient optimization. In the case of three-qubit gates, 13 processors were

used such that one processor was the master taking care of the optimization routine and

the multiplication of the intermediate results was handled by the slaves consisting of the

12 other processors. The length of each linear edge is fixed to one unit and also D = 1

as well as ~ = 1. The three-qubit gates require 12 edges and the two-qubit gates call for

5 edges. The results are applicable independent of the sample parameters since rescaling

D is possible by simultaneously scaling energy and time.

Figure 3 (Fig. 2 of Paper IV) contains an illustration of the strength of the present

1We cannot achieve U(2k) with the present Hamiltonian since it has been chosen to be traceless, but

the global phase is meaningless.
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scenario; instead of using the two-qubit gate decomposition of Fig. 3(c) and Fig. 3(d),

in which the realization of individual gates has already been optimized, one may search

for a minimum of f(γ) directly for the whole so-called three-qubit Toffoli gate (see e.g.

Ref. [2]). In Fig. 3 as well as in Publications III–V the so-called quantum-circuit notation

is used. In this notation, time runs from the left to the right and the horizontal lines

represent the history of actions on a particular qubit. In Fig. 3, the qubits are labeled

1, 2 and 3 from top to bottom. A black circle is used to indicate a controlled operation.

In Fig. 3(a), for instance, the notation means that a SWAP (denoted by two crosses)

is performed between the quantum states of qubits 2 and 3 if the state of the qubit

1 is |1〉. Otherwise nothing is done. This is in fact the definition of the Toffoli gate.

In Fig. 3(c), on the other hand, a sequence of seven operations performing the Toffoli

gate in seven substeps is illustrated. The first (leftmost) operation is a controlled-NOT

(CNOT) which flips the qubit 2 iff the qubit 3 is |1〉. The controlled-V operation means

that the operation V =
√
σx is carried out iff the control qubit is |1〉. Furthermore,

the star in Fig. 3(c) stands for a Hermitean conjugate. A matrix representation can of

course be used for any gates provided that an ordering of the subsystems, i.e. the vector

presentation, has been fixed, but the quantum circuit notation is in many ways much

more informative. For more on this notation see e.g. Ref. [2].

It should be clear from Fig. 3 why the direct implementation is superior. Instead of

allowing one qubit to be idle (parameters Bi
x and Bi

z set to zero) we can operate on all

the three qubits simultaneously. The resulting single-shot pulse sequence is almost three

times faster than the decomposed version. More examples of optimized gates may be

found in Publications III–V.

Alternative: Optimal control theory

It is also possible to apply tools from optimal control theory (OCT) in the design of

control pulses for Josephson qubits. Figure 4 illustrates a control pulse for the three-

qubit Fourier transform that was calculated using an algorithm complementary to ours

described recently in Refs. [72, 73] along with a pulse obtained using our method. This

method is somewhat different from the method presented in this Thesis and relies on

the use of variational calculus. Both methods, OCT and the polytope search, scale

exponentially with the number of qubits. Both methods can be parallelized too. The

OCT algorithm, however, yields a smooth control pulse, but it would also be possible to

use smooth pulses with our method as well. Then the node degrees of freedom would be

replaced, for instance, by the coefficients of some basis functions. In both OCT and our

approach it is possible to take into account the limitations of a particular experimental

situation and design the control pulses accordingly. Thus, the piecewise linear pulses

presented in this Thesis should be considered merely as examples. Nevertheless, the

philosophy of our method and the OCT in the context of quantum computing is the

same; in both cases the use of elementary gates can be avoided and the execution time

and errors decreased. Comparing the relative superiority of our method and OCT would

call for a separate study and the results would probably depend strongly on the exact

form of the Hamiltonian.
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Figure 4. (left) An optimal control theory realization of the quantum

Fourier transform for three qubits. The dashed line indicates B i
x and the

solid line represents Bi
z. (right) Piecewise linear realization of the QFT

from Paper III.

Example: Factoring 21

Publication V discusses the feasibility of factoring the number 21 using the numerical

optimization method developed here using inductively coupled Josephson qubits. The

number 21 is arguably the smallest nontrivial number2 to be factored using Shor’s al-

gorithm. Figure 5 of this Paper illustrates the full quantum circuit for the quantum

part of the algorithm. As many as 5900 two-qubit gates and 2300 three-qubit gates are

involved in the implementation. If only (arbitrary) two-qubit qubit gates were available,

then some 16 400 of them would be required. The number of elementary gates would be

necessarily orders of magnitude higher, depending on the exact set available. However,

in any realistic scenario the use of a limited set of elementary gates is not viable; every

measure of cutting down the execution time of the quantum part of the algorithm needs

to be taken. Thus even very heavy classical preoptimization is justifiable. Nevertheless,

for a superconducting Al sample the runtime of the algorithm would at best be 10−6

s. This coincides with the best experimental estimates for the coherence time of a su-

perconducting system [22], though for only a single qubit at a special point. The use

of arbitrary two-qubit gates instead of three-qubit gates would increase the runtime by

some 40%. The number of required qubits would be 22 with two independent controls

per qubit. Clearly this kind of an experiment with the requirement that the tempera-

2The first obvious choice would be 15 but in this case the classical preprocessing happens to reveal

the answer, see Publication V. Of course 21 = 3 × 7, but this is not a triviality of the same kind.
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ture of the environment be around tens of mK is not easy and would probably require

dedicated low-temperature control circuitry, such as rapid single flux quantum (RSFQ)

logic [74,75]. Otherwise at least 44 RF-lines and very complicated pulse generators would

be mandatory. Despite the difficulties, factoring 21 on superconducting qubits should

be possible with very careful design.

Using a scaling argument we may also comment on the factoring of numbers large

enough to break the RSA cryptosystem in the absence of any active coherence preser-

vation method, such as error correction [2, 76]. For instance, breaking the 512-bit RSA

would require thousands of qubits and since the runtime scales at best as n3 log n, where

n is the number of bits it takes to represent the number to be factored, we can argue

based on the estimates given above that tens of seconds of decoherence time is necessary.

The number of independent high-frequency controls would be thousands. Clearly a scal-

able implementation of a superconducting quantum computer is extremely challenging

and far in the future. However, many applications rely on very similar ideas and these

are quite reachable even today. One such application is considered in the next Section.
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4 Cooper Pair Pumping

In this Section we consider an application of Berry’s [31] Abelian geometrical phase

to Cooper pair pumping using mesoscopic Josephson junctions. Particular attention is

paid to the so-called Cooper pair “sluice” introduced in Paper VI. The idea of operation

and the techniques used are very similar to the control of Josephson charge qubits.

Actually, a Cooper pair “sluice” in a proper environment could serve as a qubit, since the

Hamiltonian presented below offers more than enough possibilities for control. Mastering

the flux and voltage control of only a few superconducting qubits, which is being pursued

by many groups worldwide, does not necessarily have immediate practical impact in

the field of quantum computing. However, spin-offs such the “sluice” may find uses,

e.g., in metrology. Some differences between Cooper pair pumping and superconducting

qubits exist, though. For instance, superpositions of energetically different states are not

pursued and the basic control pulse (pumping cycle) is applied repetitively in contrast

to single-shot quantum gates.

As to charge pumps in general, a seven-junction single-electron pump [30] with cur-

rents on the order of pA has been demonstrated to be usable as a capacitance stan-

dard [77], but the realization of the so-called quantum metrological triangle [78] would

require currents on the order of nA. This is beyond single-electron pumps, but Cooper

pair pumps could potentially yield currents accurately in the nA range. The use of Sur-

face Acoustic Waves (SAW) to pump electrons is being studied actively as an alternative

to ordinary electron pumps, see e.g. Ref. [79]. The engineering of the electromagnetic

environment of both electron pumps [80] as well as Cooper pair devices [81] using on-chip

resistors has been considered in order to achieve a frequency-locked current source. No

metrological Cooper pair pump has been realized yet.

The considered form of the temporal control is not found numerically but rather

using analytic physical arguments. In Subsection 4.1, the relationship between Cooper

pair pumping and Berry’s phase is discussed. Subsection 4.2 discusses the theory of the

“sluice”. Subsection 4.3, based on the experiments of Publication VII, is the highlight

of the present Section.

4.1 Adiabatic Cooper pair pumping and Berry’s phase

An adiabatic Cooper pair pump is a chain of Josephson junctions with at least two

tunable parameters. For instance the first measured pump of Geerligs et al. [26] had

three Josephson junctions in a chain and two voltage gates coupled to the islands in

between. A similar structure was also recently measured by Toppari et al. [82]. However,

longer chains, including the seven-junction Cooper pair pump of Aumentado et al. [83],

have been studied as well. The requirement that at least two parameters are needed is

due to the fact that the pumping effect is attributable to a loop in the parameter space.

We will make the connection between the pumped charge and Berry’s phase clear in

simple terms. For a more formal derivation see Ref. [84].

The Cooper pair pump shown in Fig. 5 serves as a generic model that encompasses

both the traditional gate-controlled pumps and the flux-assisted pump studied here. For
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Figure 5. Generic model of a Cooper pair pump.

now, the device is assumed to be phase biased such that the superconducting phase

difference over the device is ϕ. The average current operator for a chain of Josephson

junctions is given by

I =
2e

~

∂Hpump

∂ϕ
. (33)

Assuming, for simplicity, that CJ,j = CJ for all j and that Cg,j/CJ � 1 allows us to write

the Hamiltonian for an N -junction pump in the absence of quasiparticles as

Hpump =
1

2
(n̂ − ng)

T
C

−1(n̂ − ng) −
N−1∑

k=2

EJ,k cos(φk−1 − φk + ϕ/N)

− EJ,1 cos(ϕ/N − φ1) − EJ,N cos(ϕ/N + φN−1). (34)

Here EJ,k is the Josephson energy of the kth junction and φk is the superconducting

phase on the kth island whereas C is the three-band capacitance matrix of the junction

chain given by

C =








Cg,1 + 2CJ −CJ

−CJ Cg + 2CJ −CJ

. . .
. . .

−CJ Cg,N−1 + 2CJ







. (35)

Allowing the Josephson energies to be different for each junction, even though the ca-

pacitances are equal, anticipates the developments of the next Subsection. The number

operators of Cooper pairs n̂k of each of the islands and the gate charges ng,k = Cg,kVg,k
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are contained in n̂ and ng, that is

n̂ =






n̂1

...

n̂N




 and ng =






ng,1

...

ng,N




 . (36)

Now let us assume that the parameters of the system denoted collectively by q(t) are

tuned adiabatically around a cycle γ in the parameter space over the time t ∈ [0, tcycle]

and that the ground state is non-degenerate. What the parameters are is not important

for the derivation. Clearly, the total charge that passes through the device is

Qtot =

∫ tcycle

0

〈ψ(t)|I|ψ(t)〉dt, (37)

where |ψ(t)〉 is the state vector of the pump at the time t. Using Eq. (9) of Section 2

with g = 1 as well as Eq. (11) allows us to write the state of the pump at time t as

|ψ(t)〉 = eiθ(t)|0;q(t)〉 (38)

due to the adiabaticity assumption. Here |0;q〉 is the ground-state vector which depends

on the control-parameter vector q. The phase θ(t) has two contributions, namely the

dynamical phase

θdyn(t) = −1

~

∫ t

0

〈0;q(τ)|Hpump|0;q(τ)〉dτ (39)

and the geometrical phase

θgeom(t) = i

∫ t

0

〈0;q(τ)| d
dτ

|0;q(τ)〉dτ = i

∫
q(t)

q(0)

〈0;q|∇q|0;q〉 · dq. (40)

At time tcycle it holds in particular that

θBerry ≡ θgeom(tcycle) = i

∮

γ

〈0;q|∇q|0;q〉 · dq (41)

since at this instant the cycle is full. Now, it is possible to rewrite the integrand in

Eq. (37) as

〈ψ(t)|I|ψ(t)〉 = 〈ψ(t)|2e
~

∂Hpump

∂ϕ
|ψ(t)〉 =

2e

~
〈ψ(t)|

[
∂

∂ϕ
,Hpump

]

|ψ(t)〉. (42)

Owing to the Schrödinger equation, we may further write

〈ψ(t)|I|ψ(t)〉 = 2ei
d

dt

(

〈ψ(t)| ∂
∂ϕ

|ψ(t)〉
)

. (43)

On the other hand

〈ψ(t)| ∂
∂ϕ

|ψ(t)〉 = 〈0;q(t)|e−iθ(t) ∂

∂ϕ
eiθ(t)|0;q(t)〉

= i
∂θ(t)

∂ϕ
〈0;q(t)|0;q(t)〉+ 〈0;q(t)| ∂

∂ϕ
|0;q(t)〉

= i
∂θ(t)

∂ϕ
+ 〈0;q(t)| ∂

∂ϕ
|0;q(t)〉. (44)
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The pumped charge is thus (use q(0) = q(tcycle) and θ(0) = 0)

Qtot = −2e

∫ tcycle

0

d

dt

(
∂θ(t)

∂ϕ

)

dt+

∫ tcycle

0

2ei
d

dt
〈0;q(t)| ∂

∂ϕ
|0;q(t)〉dt

︸ ︷︷ ︸

=0

= −2e
∂

∂ϕ
(θdyn(tcycle) + θBerry) . (45)

The total charge transferred is −2e times the derivative of the phase accumulated over

one cycle with respect to the global superconducting phase difference. The first part, or

the dynamical contribution is

Qs = −2e
∂

∂ϕ
(θdyn(tcycle)) =

2e

~

∂

∂ϕ

∫ tcycle

0

〈0;q(t)|Hpump|0;q(t)〉dt

=

∫ tcycle

0

〈0;q(t)|I|0;q(t)〉dt (46)

which is just the “classical” Josephson supercurrent. In pumping applications one tries

to suppress the supercurrent altogether. The second contribution is the more nontrivial

pumped charge

Qp = −2e
∂

∂ϕ
(θBerry) = −2e

∂

∂ϕ

∮

γ

i〈0;q(t)|∇q|0;q(t)〉 · dq (47)

and as may be seen, this is in close connection with Berry’s phase. Thus pumping

Cooper pairs may, very naturally, be seen as an observable manifestation of Berry’s

phase. It is remarkable that Berry’s phase of a nondegenerate ground state has observable

consequences while for instance in quantum computing either degeneracy (holonomy) or

superpositions of energetically different states are required for observable consequences.

In quantum computing the loop γ applies a logical operation whereas here it pumps

charge.

It is possible to derive from Eq. (47) a more elaborate expression for the pumped

charge appearing often in literature. We may write

Qp = 2~ Im

[
∞∑

m=1

∮

γ

〈0;q|I|m;q〉
εq,0 − εq,m

〈m;q|∇q|0;q〉 · dq
]

, (48)

where |m;q〉 is the mth energy eigenstate and εq,m is its energy. This is the form found

first in Ref. [27] and the equivalence between Eq. (48) and Eq. (47) is demonstrated in

Ref. [84].

4.2 Cooper pair “sluice”

The expressions derived above for the pumped charge are quite general and the exact

nature of the tunable parameters has not yet been specified. Traditionally, charge pump-

ing through a chain of Josephson junctions is achieved via cyclically manipulating gate

voltages in such a manner that the state of the system propagates adiabatically through

32



0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 10

0 . 5

1

 n  g

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 10

0 . 5

1

 E  
J r / 
E  J ma

x
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 10

0 . 5

1

 t  / t  c y c l e
 E  

J l / 
E  J ma

x

n = 0 n = 0n = 1- 2 e - 2 e
(a) (b)

Figure 6. (a) Schematic of the Cooper pair “sluice”. (b) Pulse sequence

for pumping a single Cooper pair through the sluice. The exact form of

the pulses is not crucial as long as synchronization is maintained.

a series of near-eigenstates of charge. For instance, in the three-junction Cooper pair

pump [26, 27, 82] one may denote by (Q1, Q2) the eigenstate of charge with Q1 resid-

ing on island 1 and Q2 residing on island 2. Then the gate voltages are manipulated

adiabatically such that the cycle (Q1, Q2) : (0, 0) → (0, 2e) → (2e, 0) → (0, 0) is al-

most achieved. However, due to the non-vanishing Josephson coupling, the eigenstate

of energy is not an eigenstate of charge. It is impossible to decrease the Josephson en-

ergies of the junctions indefinitely without sacrificing the adiabaticity since the smallest

excitation energy is proportional to EJ. Stated otherwise, there is a tradeoff between

accuracy and adiabaticity. From the point of view of adiabaticity it would be beneficial

to increase EJ indefinitely, but in the adiabatic limit there is an error in the pumped

charge proportional to EJ such that it would be desirable to make EJ small. These two

seemingly contradicting requirements are the reason for considering tunable Josephson

junctions, i.e. SQUIDs.

The Cooper pair sluice is a single-island Cooper pair pump. It was introduced and

analyzed theoretically in Publication VI. A single island and a single gate voltage are

sufficient due to the fact that also the couplings are controlled. A schematic of the device

is shown in Fig. 6(a). The Hamiltonian of a homogeneous Cooper pair sluice is explicitly

Hsluice =EC(n̂− ng)
2 − Er

J

(

π
Φr

Φ0

)

cos(φ+ ϕ/2)

− E l
J

(

π
Φl

Φ0

)

cos(ϕ/2 − φ). (49)

Here φ is the phase on the island and n̂ is the number operator for Cooper pairs.

They obey the commutation relation [n̂, φ] = i. The charging energy is given by
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EC = 2e2/(2CJ +Cg) and the gate charge is ng = CgVg/2e. Furthermore, E l
J and Er

J are

the effective Josephson energies of the left and right SQUIDs, respectively, which we as-

sume may in principle be set to zero. The flux through the left (right) junction is denoted

by Φl (Φr). The parameter vector q for the present device is given by q = (ng, E
r
J, E

l
J)

T.

The pumping of charge is achieved via manipulating the parameters q adiabatically such

that at certain instants the ground state is ideally also exactly an eigenstate of charge.

This may be achieved by setting the Josephson couplings to zero. A typical pumping

cycle is shown in Fig. 6(b).

For instance, we may assume that initially the ground state is an eigenstate with zero

Cooper pairs which we attain e.g. with E l
J = 0, Er

J = 0 and ng = 0. Then keeping Er
J = 0

and tuning ng from zero to one and simultaneously opening the left SQUID (first vertical

dashed line in Fig. 6(b)) and closing it again (second dashed line) adiabatically increases

the number of Cooper pairs on the island by one. Namely, the ground state is after the

manipulation still an eigenstate of charge but with one more pair and we have assumed

that the system stays at its ground state. The extra Cooper pair must have tunneled

through the left SQUID since the right one was closed altogether. Ramping ng from one

again back to zero while simultaneously opening (third dashed line) and closing the right

SQUID clearly takes us to where we began: The island again has zero Cooper pairs. This

time the charge must have flown through the left SQUID. In conclusion, this cycle leads

to a pumping of exactly one Cooper pair through the device. Repeating the cycle at

the frequency f leads to a DC current I = 2ef . Note that the above logic immediately

generalizes to the pumping of m Cooper pairs by working between ng = 0 and ng = m

yielding I = 2emf . The crucial assumption is that the temporal evolution is adiabatic.

It is worth pointing out explicitly that the above cycle maintains the non-degeneracy of

the ground state such that the system indeed is protected against excitations to higher

levels.

The imperfections of the sluice have been analyzed in Publication VI. To this end,

the sluice was simulated using numerical integration of the Schrödinger equation. This

was carried out using the loop shown in Fig. 6(b) as a basis for the time dependence

of the Hamiltonian Hsluice. Then, just like in the case of quantum algorithms, the time

axis was split to a discrete set of points (106 or more) that were a distance ∆t apart

and the Hamiltonian was considered piecewise constant in time. The Hilbert space was

truncated to some 10–30 charge states depending on the value of m considered. The

state vectors were propagated using

|ψ(t+ ∆t)〉 ≈ exp(−iHsluice(t+ ∆t/2)∆t/~)|ψ(t)〉. (50)

The quantity of interest, QP in Eq. (37) was evaluated simply using the trapezoidal rule.

Note that the current operator also has a time dependence. The discretization was made

fine enough such that increasing the number of points did not change the result.

It was found that the pumping of individual Cooper pairs with an accuracy of 10−7

should be possible at currents of some 10 pA. However, increasing m to m = 10, would

allow pumping of 0.1 nA with the same accuracy. These estimates only take into ac-

count the finite operating frequency. The optimal value of m is not known. It was
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also found that with sufficient phase averaging errors should not increase. Namely, the

leakage supercurrent is proportional to sinϕ while the error in the pumped charge QP

is proportional to cosϕ. The average of both of these under a perfect voltage bias V is

clearly zero since then ϕ = 2eV t/~.

4.3 Experiments on the “sluice”

Paper VII describes the experiments demonstrating the pumping of Cooper pairs uti-

lizing the idea described above. Figure 7 shows scanning electron micrographs (SEM) of

the measured sample as well as a schematic of the measurement setup. The sample was

fabricated using standard e-beam lithography and two-angle shadow evaporation. The

steps of the fabrication process included spinning a two-layer PMMA/MAA (polymethyl

methacrylate/methacrylic acid) and PMMA resist on top of a silicon wafer, drawing

the pattern of the device using an electron beam, developing the resist in two different

solvents (first in a mixture of 25% MIBK (methyl isobutyl ketone) and 75% IPA (iso-

propanol) and then in pure IPA) to get an “undercut” and finally evaporating aluminum

from two different angles in vacuum with an oxidization step between the layers. The

Josephson junctions are thus realized as an Al-AlOx-Al sandwich. The thicknesses of

the Al layers were 30 nm and 50 nm while the thickness of the oxide is a few nm. The

extra aluminum was removed in the lift-off done by dipping the chip in acetone. The

two different layers can be seen as “shadows” in Fig. 7(b). The sample was then at-

tached to the sample holder of a He3- He4 dilution cryostat with a base temperature

of 20 mK and electrically connected using Al wire bonds. The two ends of the device

were bonded to DC lines in a four-point configuration as shown in Fig. 7(c) while the

two input coils and the gate were connected to RF lines with bandwidth up to tens of

GHz. The measurement electronics along with the arbitrary waveform generators used

for realizing the flux and voltage control were connected to a PC. Matlab scripts and

Matlab’s Data Acquisition Toolbox were used to carry out the measurement.

The sample parameters were Cg ≈ 0.2 fF, EC/kB ≈ 1 K and EJ/kB ≈ 0.5 K. The

estimate of the gate capacitance is based on gate periodicity measurements, that of the

charging energy on the measurement of the normal-state conductance at 4.2 K [85] while

the estimate of EJ is based on the normal-state resistance and the Ambegaokar-Baratoff

formula [71], i.e., EJ = h∆BCS/8e
2RT. For the arrangement of the flux pulsing it is

important to know the mutual inductances between the input coils and the SQUIDs.

The SQUIDs were intentionally designed to have large extensions to get better coupling.

The mutual inductances were measured by sweeping the DC current in the two input

coils at constant bias voltage and by measuring the current. This allows one to design

the flux pulses with proper compensations for the cross-talk, see Publication VII. The

relative phases were optimized by sweeping them and maximizing the current. Since we

were using commercial waveform generators, we were forced to use frequencies on the

order of a few MHz. Luckily, though, we could compensate for the low frequency by

increasing the number of pumped charges m, i.e. the gate amplitude.

The measurement of the full current-voltage characteristics was carried out with the
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Figure 7. (a) Scanning electron micrograph of the Cooper pair “sluice”.

The input coils are seen topmost and lowest in the picture while the gate

extends to the right. The current flows between the two electrodes on the

left. (b) Close-up of the island. The Josephson junctions are the four

lighter-shade spots formed in the overlap of the two shadows. (c) Mea-

surement setup.

pumping signal being applied underneath. It was found that despite the manipulation of

the Josephson energies, leakage current unfortunately also existed. However, since it was

possible to change the direction of the current by shifting the phase of the gate through

180 degrees, it is possible to extract the pumped current from this measurement. Namely,

subtracting the IVs with the pumping applied forward and backward from each other

should leave us with twice the pumped current. Figure 8 shows full IVs at 3 MHz for

different gate amplitudes with pumping in both directions along with the aforementioned

differences ∆I vs. voltage. It is seen that the difference in the current nicely obeys the

expected pumping behavior. In order to serve as a practical current pump the leakage

should be taken care of, e.g., by improved voltage biasing and/or improving the closing

of the SQUIDs.

The most convincing evidence of the pumping along with the fact that the above

phase shift procedure works, is found by gradually increasing the gate amplitude and then

measuring the current at a constant voltage bias. The results are shown in Fig. 9. The

quantity that we studied was ∆I in this measurement too. The amplitude was increased

such that the low level of the gate V lo
g was fixed and the high level V hi

g was swept. This
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Figure 8. (a) IVs for pumping forward (solid) and backward (dashed).

Here m ranges between 4 and 34. (b) Differences ∆I in the IVs (see text).

Horizontal dotted lines indicate the expected levels of current. Here Vmeas

is the measured value of voltage.

should result in 2e-periodic staircase in the pumped current with the step heights3 equal

to 4ef . However, due to quasiparticle poisoning faster than the measurement time scale

but slower than the pumping, the measured behavior was e-periodic with 2ef steps.

This is interpreted to be because we actually measure the average of two 2e-periodic

staircases shifted by e with respect to each other. Figure 9(b) also shows the high gate

amplitude behavior of ∆I and it is seen that up to amplitudes of 10e the agreement with

the expected behavior is good. Fig. 9(c) illustrates the least-squares fitted slopes to the

linear regime of Figs. 9(a–b). The agreement with theory is seen to be good with a few

percent error.

To conclude, we have demonstrated in practice the original idea of Publication VI for

pumping Cooper pairs with tunable Josephson junctions, i.e. SQUIDs. The experimen-

tal evidence is convincing enough to show that the idea for pumping works, although

several non-idealities still exist. Possible solutions for cutting down the leakage include

fabricating an on-chip capacitor much larger than the junction capacitance parallel with

the pump, considering a more complicated design for the SQUIDs (see Fig. 1(b) of Pub-

lication VI) and maybe even using a longer array. Lengthening the array would, though,

inevitably complicate the control. The capacitance, however, would better conserve the

energy of the pump since then the so-called P(E)-curve would be peaked close to the zero

of energy, see e.g. Ref. [70]. The quasiparticle poisoning is not necessarily a problem even

from the application point of view, if the quasiparticle current is small enough. Namely,

our measurements indicate that the net quasiparticle flow is negligible but, instead, the

quasiparticles jump randomly on and off the island with no preferred direction. That

is, the flow of current is mostly due to Cooper pairs. The quasiparticles in the present

measurement are thus probably of the non-equilibrium type reported in Ref. [86]. There

the reported time scale of quasiparticle poisoning for a superconducting SET was 10 µs.

In Ref. [87] the relevant time-scale was 10−2 s but in a somewhat different setup. These

figures support our time scale argument, since the integration time for our measurement

3Recall that ∆I should be twice the pumped current.
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Figure 9. (a) Difference ∆I in the current for forward and backward

pumping at 2.5 MHz against the high level of the gate signal V hi
g with the

low level at zero. The dashed lines are drawn at 2ef intervals. (b) Large

gate amplitude behavior of ∆I at a few frequencies. The dashed lines

show the expected gate dependence, i.e. their slope is 2ef . The curves are

offset for clarity. (c) Fitted slopes to the data of the previous plots up to

VgCg/e = 10 are shown by circles. The solid line indicates the expected

behavior. The voltage bias point was around 10 µV in all the above plots.

was on the order of 0.1 s and the pumping time smaller than 1 µs. We could not, how-

ever, experimentally determine the characteristic time for quasiparticles in the present

setup.
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5 Conclusions

In this Overview we have discussed different aspects of the controlled evolution of

quantum systems, both geometrical and dynamical. Particular attention was paid to

nanoscale Josephson junction circuits. The two applications that were considered in

detail included quantum computing and quantum charge pumping. Let us briefly sum-

marize the conclusion of the Publications included in this Thesis:

In Publications I–II, a realization independent numerical method of finding arbitrary

holonomic quantum gates was studied. It was shown that holonomy loops realizing

any one and two-qubit unitary operation for the studied three-state model can be found

easily. Moreover, it was shown that the length of the loop could be reduced by numerical

optimization.

In Publications III–V, the optimization method was generalized to dynamical quan-

tum computing. The physical system studied was the inductively coupled Josephson

charge qubit array, although the method could easily be generalized to other systems.

The algorithm was parallelized and shown to be capable of finding single-shot realiza-

tions for up to three-qubit gates. Publication III introduced the method while Publica-

tion IV concentrated on accelerating quantum algorithms using three-qubit gates. The

more extended Publication V discussed the requirements of performing Shor’s algorithm

on the inductively coupled charge-qubit array. It was found that factoring 21, arguably

the simplest “non-trivial” composite integer, would require 22 qubits and microsecond

coherence times which is on the same order as the best reported coherence times in

superconducting circuits. However, it was found, that breaking for instance the 512-bit

RSA would require thousands of qubits working co-operatively and tens of seconds in

terms of coherence time. All the estimates were based on the assumption that arbitrary

three-qubit gates are available in single-shot form. The use of elementary gates would

prolong the runtime severely. The conclusion regarding Publications I-V is that even

though no change in the complexity of the algorithm is obtained via numerical opti-

mization, the stringent limits set by short decoherence times makes it well worthwhile

to try and reduce the runtime even by a numerical factor. Optimization may well result

in cutting down the runtime by orders of magnitude opposed to elementary-gate logic

inspired by classical computers.

In Publication VI, an application of Berry’s geometrical phase in a superconducting

circuit was discussed. There a novel Cooper pair pump, the “sluice”, consisting of

just one superconducting island connected to leads via SQUID loops and utilizing both

flux and voltage control was introduced. It was shown that the device can potentially

reach metrological accuracy. In Publication VII, the experimental results of the device

were reported. It was found that the pumped current increases in clear steps with the

increasing gate amplitude and changes direction under a 180-degree phase shift of the

gate, even though quasiparticle poisoning and leakage were present. Many suggestions

for improving the device were given. The “sluice” was found to be a promising candidate

for a practical current pump. The clear benefit of the “sluice” is that it is simple with

just three control parameters and it would allow for higher operating frequencies. One
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may further argue that solving the practical challenges in its control is much easier than

building even a simple working quantum computer. It could, therefore, find use as a

great test bench for the control techniques of superconducting qubits.
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