23 research outputs found

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Concussion-Associated Polygenic Profiles of Elite Male Rugby Athletes

    Get PDF
    Due to the high-velocity collision-based nature of elite rugby league and union, the risk of sustaining a concussion is high. Occurrence of and outcomes following a concussion are probably affected by the interaction of multiple genes in a polygenic manner. This study investigated whether suspected concussion-associated polygenic profiles of elite rugby athletes differed from non-athletes and between rugby union forwards and backs. We hypothesised that a total genotype score (TGS) using eight concussion-associated polymorphisms would be higher in elite rugby athletes than non-athletes, indicating selection for protection against incurring or suffering prolonged effects of, concussion in the relatively high-risk environment of competitive rugby. In addition, multifactor dimensionality reduction was used to identify genetic interactions. Contrary to our hypothesis, TGS did not differ between elite rugby athletes and non-athletes (p ≥ 0.065), nor between rugby union forwards and backs (p = 0.668). Accordingly, the TGS could not discriminate between elite rugby athletes and non-athletes (AUC ~0.5), suggesting that, for the eight polymorphisms investigated, elite rugby athletes do not have a more ‘preferable’ concussion-associated polygenic profile than non-athletes. However, the COMT (rs4680) and MAPT (rs10445337) GC allele combination was more common in rugby athletes (31.7%; p < 0.001) and rugby union athletes (31.8%; p < 0.001) than non-athletes (24.5%). Our results thus suggest a genetic interaction between COMT (rs4680) and MAPT (rs10445337) assists rugby athletes in achieving elite status. These findings need exploration vis-à-vis sport-related concussion injury data and could have implications for the management of inter-individual differences in concussion risk

    Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis

    Get PDF
    Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13×10– ¹⁵) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65×10– ²⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69×10– ¹²; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity. Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR

    Germline selection shapes human mitochondrial DNA diversity.

    Get PDF
    Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.NIHR, Wellcome Trust, MRC, Genomics Englan

    Collagen gene polymorphisms previously associated with resistance to soft-tissue injury are more common in competitive runners than non-athletes

    No full text
    Single nucleotide polymorphisms (SNPs) of collagen genes have been associated with soft-tissue injury and running performance. However, their combined contribution to running performance is unknown. We investigated the association of two collagen gene SNPs with athlete status and performance in 1429 Caucasian participants, including 597 competitive runners (354 men, 243 women) and 832 non-athletes (490 men, 342 women). Genotyping for COL1A1 rs1800012 (C>A) and COL5A1 rs12722 (C>T) SNPs was performed by real-time polymerase chain reaction. The numbers of ‘injury-resistant’ alleles from each SNP, based on previous literature (rs1800012 A allele, rs12722 C allele), were combined as an injury-resistance score (RScore, 0 to 4; higher scores indicate injury-resistance). Genotype frequencies, individually and combined as RScore, were compared between cohorts and investigated for associations with performance via official race times. Runners had 1.34 times greater odds of being rs12722 CC homozygotes than non-athletes (19.7% vs. 15.5%, P=0.020) with no difference in rs1800012 genotype distribution (P=0.659). Fewer runners had RScore 0 (18.5% vs. 24.7%) and more had RScore 4 (0.6% vs. 0.3%) than non-athletes (P<0.001). Competitive performance was not associated with COL1A1 genotype (P=0.933), COL5A1 genotype (P=0.613) or RScore (P=0.477). Whilst not associated directly with running performance amongst competitive runners, a higher combined frequency of injury-resistant COL1A1 rs1800012 A and COL5A1 rs12722 C alleles in competitive runners than non-athletes suggests these SNPs may be advantageous via a mechanism that supports, but does not directly enhance, running performance

    Concussion-associated gene variant COMT rs4680 is associated with elite rugby athlete status

    No full text
    Objective: Concussions are common match injuries in elite rugby and reports exist of reduced cognitive function and long-term health consequences that can interrupt or end a playing career and produce continued ill health. The aim of this study was to investigate the association between elite rugby status and eight concussion-associated risk polymorphisms. We hypothesized that concussion-associated risk genotypes and alleles would be underrepresented in elite rugby athletes compared to non-athletes. Design: A case-control genetic association study. Setting: Institutional (university). Participants: Elite Caucasian male rugby athletes (n = 668, mean (standard deviation) height 1.85 (0.07) m, mass 102 (12) kg, age 29 (7) yr) and 1015 non-athlete Caucasian men and women (48% men). Interventions: Genotype was the independent variable, obtained via PCR of genomic DNA using TaqMan probes. Main Outcome Measure: Elite athlete status, with groups compared using χ2 and odds ratio. Results: The COMT rs4680 Met/Met (AA) genotype, Met allele possession and Met allele frequency were lower in rugby athletes (24.8%, 74.6% and 49.7%, respectively) than non-athletes (30.2%, 77.6%, and 54.0%; P < 0.05). The Val/Val (GG) genotype was more common in elite rugby athletes than non-athletes (odds ratio 1.39, 95% confidence interval 1.04-1.86). No other polymorphism was associated with elite athlete status. Conclusions: Elite rugby athlete status is associated with COMT rs4680 genotype that, acting pleiotropically, could affect stress resilience and behavioral traits during competition, concussion risk and/or recovery from concussion. Consequently, assessing COMT rs4680 genotype might aid future individualized management of concussion risk amongst athletes

    Adjuvanting a viral vectored vaccine against pre-erythrocytic malaria

    Get PDF
    The majority of routinely given vaccines require two or three immunisations for full protective efficacy. Single dose vaccination has long been considered a key solution to improving the global immunisation coverage. Recent infectious disease outbreaks have further highlighted the need for vaccines that can achieve full efficacy after a single administration. Viral vectors are a potent immunisation platform, benefiting from intrinsic immuno-stimulatory features while retaining excellent safety profile through the use of non-replicating viruses. We investigated the scope for enhancing the protective efficacy of a single dose adenovirus-vectored malaria vaccine in a mouse model of malaria by co-administering it with vaccine adjuvants. Out of 11 adjuvants, only two, Abisco(®)-100 and CoVaccineHT(TM), enhanced vaccine efficacy and sterile protection following malaria challenge. The CoVaccineHT(TM) adjuvanted vaccine induced significantly higher proportion of antigen specific central memory CD8(+) cells, and both adjuvants resulted in increased proportion of CD8(+) T cells expressing the CD107a degranulation marker in the absence of IFNγ, TNFα and IL2 production. Our results show that the efficacy of vaccines designed to induce protective T cell responses can be positively modulated with chemical adjuvants and open the possibility of achieving full protection with a single dose immunisation
    corecore