433 research outputs found

    Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments

    Full text link
    We present direct time- and space- resolved measurements of the electron density of femtosecond laser pulse-induced plasma filaments. The dominant nonlinearity responsible for extended atmospheric filaments is shown to be field-induced rotation of air molecules.Comment: 12 pages, 5 figure

    Heating of Micro-protrusions in Accelerating Structures

    Full text link
    The thermal and field emission of electrons from protrusions on metal surfaces is a possible limiting factor on the performance and operation of high-gradient room temperature accelerator structures. We present here the results of extensive numerical simulations of electrical and thermal behavior of protrusions. We unify the thermal and field emission in the same numerical framework, describe bounds for the emission current and geometric enhancement, then we calculate the Nottingham and Joule heating terms and solve the heat equation to characterize the thermal evolution of emitters under RF electric field. Our findings suggest that, heating is entirely due to the Nottingham effect, that thermal runaway scenarios are not likely, and that high RF frequency causes smaller swings in temperature and cooler tips. We build a phenomenological model to account for the effect of space charge and show that space charge eliminates the possibility of tip melting, although near melting temperatures reached.Comment: 8 pages, 10 figure

    Limitations in Predicting Radiation-Induced Pharmaceutical Instability during Long-Duration Spaceflight

    Get PDF
    As human spaceflight seeks to expand beyond low-Earth orbit, NASA and its international partners face numerous challenges related to ensuring the safety of their astronauts, including the need to provide a safe and effective pharmacy for long-duration spaceflight. Historical missions have relied upon frequent resupply of onboard pharmaceuticals; as a result, there has been little study into the effects of long-term exposure of pharmaceuticals to the space environment. Of particular concern are the long-term effects of space radiation on drug stability, especially as missions venture away from the protective proximity of the Earth. Here we highlight the risk of space radiation to pharmaceuticals during exploration spaceflight, identifying the limitations of current understanding. We further seek to identify ways in which these limitations could be addressed through dedicated research efforts aimed towards the rapid development of an effective pharmacy for future spaceflight endeavors.Comment: in press, Nature Microgravit

    Dynamics and Pattern Formation in Large Systems of Spatially-Coupled Oscillators with Finite Response Times

    Full text link
    We consider systems of many spatially distributed phase oscillators that interact with their neighbors. Each oscillator is allowed to have a different natural frequency, as well as a different response time to the signals it receives from other oscillators in its neighborhood. Using the ansatz of Ott and Antonsen (Ref. \cite{OA1}) and adopting a strategy similar to that employed in the recent work of Laing (Ref. \cite{Laing2}), we reduce the microscopic dynamics of these systems to a macroscopic partial-differential-equation description. Using this macroscopic formulation, we numerically find that finite oscillator response time leads to interesting spatio-temporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae, spiral waves, etc., and we study interactions and evolutionary behaviors of these spatio-temporal patterns

    Inducing Barbero-Immirzi Connections along SU(2)-reductions of Bundles on Spacetime

    Full text link
    We shall present here a general apt technique to induce connections along bundle reductions which is different from the standard restriction. This clarifies and generalizes the standard procedure to define Barbero-Immirzi (BI) connection, though on spacetime. The standard spacial BI connection used in LQG is then obtained by its spacetime version by standard restriction. The general prescription to define such a reduced connection is interesting from a mathematical viewpoint and it allows a general and direct control on transformation laws of the induced object. Moreover, unlike what happens by using standard restriction, we shall show that once a bundle reduction is given, then any connection induces a reduced connection with no constraint on the original holonomy as it happens when connections are simply restricted.Comment: 6 pages, some comments adde

    Echoes and revival echoes in systems of anharmonically confined atoms

    Full text link
    We study echoes and what we call 'revival echoes' for a collection of atoms that are described by a single quantum wavefunction and are confined in a weakly anharmonic trap. The echoes and revival echoes are induced by applying two, successive temporally localized potential perturbations to the confining potential, one at time t=0t=0, and a smaller one at time t=τt=\tau. Pulse-like responses in the expectation value of position are predicted at $t \approx n\tau$ ($n=2,3,...$) and are particularly evident at $t \approx 2\tau$. A novel result of our study is the finding of 'revival echoes'. Revivals (but not echoes) occur even if the second perturbation is absent. In particular, in the absence of the second perturbation, the response to the first perturbation dies away, but then reassembles, producing a response at revival times $mT_x$ ($m=1,2,...$). Including the second perturbation at $t=\tau$, we find temporally localized responses, revival echoes, both before and after $t\approx mT_x$, e.g., at $t\approx m T_x-n \tau$ (pre-revival echoes) and at $t\approx mT_x+n\tau$, (post-revival echoes), where $m$ and $n$ are $1,2,...$ . Depending on the form of the perturbations, the 'principal' revival echoes at $t \approx T_x \pm \tau$ can be much larger than the echo at $t \approx 2\tau$. We develop a perturbative model for these phenomena, and compare its predictions to the numerical solutions of the time-dependent Schr\"odinger Equation. The scaling of the size of the various echoes and revival echoes as a function of the symmetry and size of the perturbations applied at $t=0$ and $t=\tau$ is investigated. We also study the presence of revivals and revival echoes in higher moments of position, , p>1p>1, and the effect of atom-atom interactions on these phenomena.Comment: 33 pages, 13 figures, corrected typos and added reference

    Scalar Decay in Chaotic Mixing

    Full text link
    I review the local theory of mixing, which focuses on infinitesimal blobs of scalar being advected and stretched by a random velocity field. An advantage of this theory is that it provides elegant analytical results. A disadvantage is that it is highly idealised. Nevertheless, it provides insight into the mechanism of chaotic mixing and the effect of random fluctuations on the rate of decay of the concentration field of a passive scalar.Comment: 35 pages, 15 figures. Springer-Verlag conference style svmult.cls (included). Published in "Transport in Geophysical Flows: Ten Years After," Proceedings of the Grand Combin Summer School, 14-24 June 2004, Valle d'Aosta, Italy. Fixed some typo

    Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution

    Full text link
    We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's complete stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment
    corecore