38 research outputs found

    Radiation induced force between two planar waveguides

    Get PDF
    We study the electromagnetic force exerted on a pair of parallel slab waveguides by the light propagating through them. We have calculated the dependence of the force on the slab separation by means of the Maxwell--Stress tensor formalism and we have discussed its main features for the different propagation modes: spatially symmetric (antisymmetric) modes give rise to an attractive (repulsive) interaction. We have derived the asymptotic behaviors of the force at small and large separation and we have quantitatively estimated the mechanical deflection induced on a realistic air-bridge structure.Comment: 10 pages, 6 figure

    Strong optical force induced by morphology dependent resonances

    Full text link
    We consider the resonant optical force acting on a pair of transparent microspheres by the excitation of the Morphology Dependent Resonance (MDR). The bonding and anti-bonding modes of the MDR correspond to strong attractions and repulsions respectively. The dependence of the force on separation and the role of absorption are discussed. At resonance, the force can be enhanced by orders of magnitude so that it will dominate over other relevant forces. We find that a stable binding configuration can be induced by the resonant optical force.Comment: 4 pages, 4 figure

    Localized vibrational modes in optically bound structures

    Full text link
    We show, through analytical theory and rigorous numerical calculations, that optical binding can organize a collection of particles into stable one-dimensional lattice. This lattice, as well as other optically-bound structures, are shown to exhibit spatially localized vibrational eigenmodes. The origin of localization here is distinct from the usual mechanisms such as disorder, defect, or nonlinearity, but is a consequence of the long-ranged nature of optical binding. For an array of particles trapped by an interference pattern, the stable configuration is often dictated by the external light source, but our calculation revealed that inter-particle optical binding forces can have a profound influence on the dynamics.Comment: 4 pages, Optical Bindin

    Optical binding of particles with or without the presence of a flat dielectric surface

    Full text link
    Optical fields can induce forces between microscopic objects, thus giving rise to new structures of matter. We study theoretically these optical forces between two spheres, either isolated in water, or in presence of a flat dielectric surface. We observe different behavior in the binding force between particles at large and at small distances (in comparison with the wavelength) from each other. This is due to the great contribution of evanescent waves at short distances. We analyze how the optical binding depends of the size of the particles, the material composing them, the wavelength and, above all, on the polarization of the incident beam. We also show that depending on the polarization, the force between small particles at small distances changes its sign. Finally, the presence of a substrate surface is analyzed showing that it only slightly changes the magnitudes of the forces, but not their qualitative nature, except when one employs total internal reflection, case in which the particles are induced to move together along the surface.Comment: 8 pages, 9 figures, and 1 tabl
    corecore