3,719 research outputs found
Effects of turbulent mixing on critical behaviour in the presence of compressibility: Renormalization group analysis of two models
Critical behaviour of two systems, subjected to the turbulent mixing, is
studied by means of the field theoretic renormalization group. The first
system, described by the equilibrium model A, corresponds to relaxational
dynamics of a non-conserved order parameter. The second one is the strongly
non-equilibrium reaction-diffusion system, known as Gribov process and
equivalent to the Reggeon field theory. The turbulent mixing is modelled by the
Kazantsev-Kraichnan "rapid-change" ensemble: time-decorrelated Gaussian
velocity field with the power-like spectrum k^{-d-\xi}. Effects of
compressibility of the fluid are studied. It is shown that, depending on the
relation between the exponent \xi and the spatial dimension d, the both systems
exhibit four different types of critical behaviour, associated with four
possible fixed points of the renormalization group equations. The most
interesting point corresponds to a new type of critical behaviour, in which the
nonlinearity and turbulent mixing are both relevant, and the critical exponents
depend on d, \xi and the degree of compressibility. For the both models,
compressibility enhances the role of the nonlinear terms in the dynamical
equations: the region in the d-\xi plane, where the new nontrivial regime is
stable, is getting much wider as the degree of compressibility increases. In
its turn, turbulent transfer becomes more efficient due to combined effects of
the mixing and the nonlinear terms.Comment: 25 pages, 4 figure
Effects of Turbulent Mixing on the Critical Behavior
Effects of strongly anisotropic turbulent mixing on the critical behavior are
studied by means of the renormalization group. Two models are considered: the
equilibrium model A, which describes purely relaxational dynamics of a
nonconserved scalar order parameter, and the Gribov model, which describes the
nonequilibrium phase transition between the absorbing and fluctuating states in
a reaction-diffusion system. The velocity is modelled by the d-dimensional
generalization of the random shear flow introduced by Avellaneda and Majda
within the context of passive scalar advection. Existence of new nonequilibrium
types of critical regimes (universality classes) is established.Comment: Talk given in the International Bogolyubov Conference "Problems of
Theoretical and Mathematical Physics" (Moscow-Dubna, 21-27 August 2009
Superscaling in Nuclei: A Search for Scaling Function Beyond the Relativistic Fermi Gas Model
We construct a scaling function for inclusive electron
scattering from nuclei within the Coherent Density Fluctuation Model (CDFM).
The latter is a natural extension to finite nuclei of the Relativistic Fermi
Gas (RFG) model within which the scaling variable was
introduced by Donnelly and collaborators. The calculations show that the
high-momentum components of the nucleon momentum distribution in the CDFM and
their similarity for different nuclei lead to quantitative description of the
superscaling in nuclei. The results are in good agreement with the experimental
data for different transfer momenta showing superscaling for negative values of
, including those smaller than -1.Comment: 16 pages, 5 figures, submitted for publication to Phys. Rev.
Breaking of ergodicity and long relaxation times in systems with long-range interactions
The thermodynamic and dynamical properties of an Ising model with both short
range and long range, mean field like, interactions are studied within the
microcanonical ensemble. It is found that the relaxation time of
thermodynamically unstable states diverges logarithmically with system size.
This is in contrast with the case of short range interactions where this time
is finite. Moreover, at sufficiently low energies, gaps in the magnetization
interval may develop to which no microscopic configuration corresponds. As a
result, in local microcanonical dynamics the system cannot move across the gap,
leading to breaking of ergodicity even in finite systems. These are general
features of systems with long range interactions and are expected to be valid
even when the interaction is slowly decaying with distance.Comment: 4 pages, 5 figure
Confinement in the Abelian-Higgs-type theories: string picture and field correlators
Field correlators and the string representation are used as two complementary
approaches for the description of confinement in the SU(N)-inspired dual
Abelian-Higgs-type model. In the London limit of the simplest, SU(2)-inspired,
model, bilocal electric field-strength correlators have been derived with
accounting for the contributions to these averages produced by closed dual
strings. The Debye screening in the plasma of such strings yields a novel
long-range interaction between points lying on the contour of the Wilson loop.
This interaction generates a Luescher-type term, even when one restrics oneself
to the minimal surface, as it is usually done in the bilocal approximation to
the stochastic vacuum model. Beyond the London limit, it has been shown that a
modified interaction appears, which becomes reduced to the standard Yukawa one
in the London limit. Finally, a string representation of the SU(N)-inspired
model with the theta-term, in the London limit, can be constructed.Comment: 17 pages, no figures, REVTeX 4; Invited contribution to the
collection of articles devoted to the 70th birthday of Yu.A. Simono
String Nature of Confinement in (Non-)Abelian Gauge Theories
Recent progress achieved in the solution of the problem of confinement in
various (non-)Abelian gauge theories by virtue of a derivation of their string
representation is reviewed. The theories under study include QCD within the
so-called Method of Field Correlators, QCD-inspired Abelian-projected theories,
and compact QED in three and four space-time dimensions. Various
nonperturbative properties of the vacua of the above mentioned theories are
discussed. The relevance of the Method of Field Correlators to the study of
confinement in Abelian models, allowing for an analytical description of this
phenomenon, is illustrated by an evaluation of field correlators in these
models.Comment: 100 pages, LaTeX2e, no figures, 1 table, based on the Ph.D. thesises
at the Humboldt University of Berlin (1999) (available under
http://dochost.rz.hu-berlin.de) and the Institute of Theoretical and
Experimental Physics, Moscow (2000), new results are included, extended with
respect to the journal versio
Generator Coordinate Method Calculations for Ground and First Excited Collective States in He, O and Ca Nuclei
The main characteristics of the ground and, in particular, the first excited
monopole state in the He, O and Ca nuclei are studied
within the generator coordinate method using Skyrme-type effective forces and
three construction potentials, namely the harmonic-oscillator, the square-well
and Woods-Saxon potentials. Calculations of density distributions, radii,
nucleon momentum distributions, natural orbitals, occupation numbers and
depletions of the Fermi sea, as well as of pair density and momentum
distributions are carried out. A comparison of these quantities for both ground
and first excited monopole states with the available empirical data and with
the results of other theoretical methods are given and discussed in detail.Comment: 15 pages, LaTeX, 6 Postscript figures, submitted to EPJ
Pressure and intermittency in passive vector turbulence
We investigate the scaling properties a model of passive vector turbulence
with pressure and in the presence of a large-scale anisotropy. The leading
scaling exponents of the structure functions are proven to be anomalous. The
anisotropic exponents are organized in hierarchical families growing without
bound with the degree of anisotropy. Nonlocality produces poles in the
inertial-range dynamics corresponding to the dimensional scaling solution. The
increase with the P\'{e}clet number of hyperskewness and higher odd-dimensional
ratios signals the persistence of anisotropy effects also in the inertial
range.Comment: 4 pages, 1 figur
Information entropy and nucleon correlations in nuclei
The information entropies in coordinate and momentum spaces and their sum
(, , ) are evaluated for many nuclei using "experimental"
densities or/and momentum distributions. The results are compared with the
harmonic oscillator model and with the short-range correlated distributions. It
is found that depends strongly on and does not depend very much
on the model. The behaviour of is opposite. The various cases we consider
can be classified according to either the quantity of the experimental data we
use or by the values of , i.e., the increase of the quality of the density
and of the momentum distributions leads to an increase of the values of . In
all cases, apart from the linear relation , the linear relation
also holds. V is the mean volume of the nucleus. If is
considered as an ensemble entropy, a relation between or and the
ensemble volume can be found. Finally, comparing different electron scattering
experiments for the same nucleus, it is found that the larger the momentum
transfer ranges, the larger the information entropy is. It is concluded that
could be used to compare different experiments for the same nucleus and to
choose the most reliable one.Comment: 14 pages, 4 figures, 2 table
- …