4,139 research outputs found

    Confining strings in the Abelian-projected SU(3)-gluodynamics II. 4D-case with θ\theta-term

    Get PDF
    The generalization of 4D confining string theory to the SU(3)-inspired case is derived. It describes string representation of the Wilson loop in the SU(3)-analogue of compact QED extended by the θ\theta-term. It is shown that although the obtained theory of confining strings differs from that of compact QED, their low-energy limits have the same functional form. This fact leads to the appearance of the string θ\theta-term in the low-energy limit of the SU(3)-inspired confining string theory. In particular, it is shown that in the extreme strong coupling regime, the crumpling of string world sheets could disappear owing to the string θ\theta-term at θ=π/12\theta=\pi/12. Finally, some characteristic features of the SU(N)-case are pointed out.Comment: 8 pages, LaTeX2e, no figures, to appear in Europhys. Letter

    Confining Strings in the Abelian-Projected SU(3)-Gluodynamics

    Get PDF
    String representation of the Wilson loop in 3D Abelian-projected SU(3)-gluodynamics is constructed in the approximation that Abelian-projected monopoles form a gas. Such an assumption is much weaker than the standard one, demanding the monopole condensation. It is demonstrated that the summation over world sheets, bounded by the contour of the Wilson loop, is realized by the summation over branches of a certain effective multivalued potential of the monopole densities. Finally, by virtue of the so-constructed representation of the Wilson loop in terms of the monopole densities, this quantity is evaluated in the approximation of a dilute monopole gas, which makes confinement in the model under study manifest.Comment: 7 pages, new results are adde

    SUSY 3D Georgi-Glashow model at finite temperature

    Get PDF
    We study the finite-temperature properties of the supersymmetric version of (2+1)D Georgi-Glashow model. As opposed to its nonsupersymmetric counterpart, the parity symmetry in this theory at zero temperature is spontaneously broken by the bilinear photino condensate. We find that as the temperature is raised, the deconfinement and the parity restoration occur in this model at the same point Tc=g2/8πT_c=g^2/8\pi. The transition is continuous, but is not of the Ising type as in nonsupersymmetric Georgi-Glashow model, but rather of the Berezinsky-Kosterlitz-Thouless type as in Z4Z_4-invariant spin model.Comment: 8 pages, LaTeX2e, no figure

    String breaking in QCD: dual superconductor vs. stochastic vacuum model

    Get PDF
    Effects of dispersion of the chromoelectric field of the flux tube on the string-breaking distance are studied. The leading-order correction is shown to slightly diminish the result following from the Schwinger formula. Instead, accounting for corrections of all orders might result, at certain values of the Landau-Ginzburg parameter, in an increase of the string-breaking distance up to one order of magnitude. An alternative formula for this distance is obtained when produced pairs are treated as holes in a confining pellicle, which spans over the contour of an external quark-antiquark pair. Generalizations of the obtained results to the cases of small temperatures, as well as temperatures close to the critical one are also discussed.Comment: 21 pages, no figures, uses JHEP3.cl

    Curvature expansion for the background-induced gluodynamics string

    Full text link
    Using cumulant expansion for an averaged Wilson loop we derive an action of the gluodynamics string in the form of a series in powers of the correlation length of the vacuum. In the lowest orders it contains the Nambu-Goto term and the rigidity term with the coupling constants computed from the bilocal correlator of gluonic fields. Some higher derivative corrections are calculated.Comment: 10 page

    Superscaling in Nuclei: A Search for Scaling Function Beyond the Relativistic Fermi Gas Model

    Get PDF
    We construct a scaling function f(ψ)f(\psi^{\prime}) for inclusive electron scattering from nuclei within the Coherent Density Fluctuation Model (CDFM). The latter is a natural extension to finite nuclei of the Relativistic Fermi Gas (RFG) model within which the scaling variable ψ\psi^{\prime} was introduced by Donnelly and collaborators. The calculations show that the high-momentum components of the nucleon momentum distribution in the CDFM and their similarity for different nuclei lead to quantitative description of the superscaling in nuclei. The results are in good agreement with the experimental data for different transfer momenta showing superscaling for negative values of ψ\psi^{\prime}, including those smaller than -1.Comment: 16 pages, 5 figures, submitted for publication to Phys. Rev.

    String Nature of Confinement in (Non-)Abelian Gauge Theories

    Get PDF
    Recent progress achieved in the solution of the problem of confinement in various (non-)Abelian gauge theories by virtue of a derivation of their string representation is reviewed. The theories under study include QCD within the so-called Method of Field Correlators, QCD-inspired Abelian-projected theories, and compact QED in three and four space-time dimensions. Various nonperturbative properties of the vacua of the above mentioned theories are discussed. The relevance of the Method of Field Correlators to the study of confinement in Abelian models, allowing for an analytical description of this phenomenon, is illustrated by an evaluation of field correlators in these models.Comment: 100 pages, LaTeX2e, no figures, 1 table, based on the Ph.D. thesises at the Humboldt University of Berlin (1999) (available under http://dochost.rz.hu-berlin.de) and the Institute of Theoretical and Experimental Physics, Moscow (2000), new results are included, extended with respect to the journal versio

    Superscaling and Neutral Current Quasielastic Neutrino-Nucleus Scattering beyond the Relativistic Fermi Gas Model

    Get PDF
    The superscaling analysis is extended to include quasielastic (QE) scattering via the weak neutral current of neutrinos and antineutrinos from nuclei. The scaling function obtained within the coherent density fluctuation model (used previously in calculations of QE inclusive electron and charge-changing (CC) neutrino scattering) is applied to neutral current neutrino and antineutrino scattering with energies of 1 GeV from 12^{12}C with a proton and neutron knockout (u-channel inclusive processes). The results are compared with those obtained using the scaling function from the relativistic Fermi gas model and the scaling function as determined from the superscaling analysis (SuSA) of QE electron scattering.Comment: 10 pages, 6 figures, published in Phys. Rev.

    Breaking of ergodicity and long relaxation times in systems with long-range interactions

    Full text link
    The thermodynamic and dynamical properties of an Ising model with both short range and long range, mean field like, interactions are studied within the microcanonical ensemble. It is found that the relaxation time of thermodynamically unstable states diverges logarithmically with system size. This is in contrast with the case of short range interactions where this time is finite. Moreover, at sufficiently low energies, gaps in the magnetization interval may develop to which no microscopic configuration corresponds. As a result, in local microcanonical dynamics the system cannot move across the gap, leading to breaking of ergodicity even in finite systems. These are general features of systems with long range interactions and are expected to be valid even when the interaction is slowly decaying with distance.Comment: 4 pages, 5 figure
    corecore