40 research outputs found

    Elucidation of One Step Synthesis of PEGylated CuFe Bimetallic Nanoparticles. Antimicrobial Activity of CuFe@PEG vs Cu@PEG

    Get PDF
    There is a growing field of research on the physicochemical properties of bimetallic nanoparticles (BMNPs) and their potential use in different applications. Meanwhile, their antimicrobial activity is scarcely reported, although BMNPs can potentially achieve unique chemical transformations and synergetic effects can be presented. Towards this direction a reproducible simple hybrid polyol process under moderate temperature solvothermal conditions has been applied for the isolation of non-oxide contaminated bimetallic CuFe nanoparticles (NPs). 1,2-propylene glycol (PG), tetraethylene glycol (TEG) and polyethylene glycol (PEG 8000), that exhibit different physicochemical properties, have been utilized to regulate the size, structure, composition and the surface chemistry of NPs. The BMNPs were found to be of small crystalline size, 30–45 nm, and high hydrophilicity, different wt% percentage of organic coating and variable hydrodynamic size and surface charge. The antimicrobial activity of the BMNPs was evaluated against the bacterial strains B. subtilis, E. coli and fungus S. cerevisiae. The IC50 values for CuFe NPs were found significantly lower compared with Cu NPs of the same size, revealing an enhancement in the antimicrobial activity when iron and copper coexist in the crystal structure. The reactive oxygen species (ROS) production was measured intracellularly and extracellularly by the nitroblue tetrazolium assay in the fungal cultures. No extracellular ROS were measured suggesting that both CuFe and Cu NPs enter the fungal cells during the incubation, also verified by optical imaging of the fungal cells in the presence of NPs. Higher ROS concentrations were generated intracellularly for CuFe NPs supporting different red/ox reaction mechanisms

    Mastering the game of Go without human knowledge

    Get PDF
    A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo

    Albumin possesses intrinsic enolase activity towards dihydrotestosterone which can differentiate benign from malignant breast tumors

    No full text
    Serum albumin was found to possess enolase activity towards the dihydrotestesterone (DHT) molecule, converting it from its 3-keto to 3-enol form. This activity was accompanied by albumin during all stages of purification, as well as following various treatments, a fact indicating that the enzymatic activity was an intrinsic property of albumin molecule and did not represent an impurity of the preparation. Enolase activity was decreased in parallel with the quantity of intact albumin molecules when proteolytic enzymes were used for their degradation. The activity was strongly inhibited by Ni (II) and Cu (II) ions, which bind to 3-histidine of the albumin molecule, as well as by oleic acid and cholesterol. It was also inhibited, in a reversible mantle, by surface - active agents. Enolase activity was found in all mammalian,species studied the specific activity however was very low in the se, nm of dogs. The administration of DHT to mice did not influence the albumin or enolase levels in their serum. The optimum pH of enolase was at 9.2, with a carbonate buffer solution. In addition to the serum, enolase activity was found to be a feature of intracellular, albumin. The two albumins exhibited the same specific activity and the same Km for DHT. The study of cytosolic albumin, obtained from human mammary gland tissue, revealed that benign and malignant tumors of this gland differed substantially with respect to their percentage of albumin. Significant differences were also observed in enolase activity, a consequence of the existence of a fraction of albumin in the malignant tissue in a polymeric form. This form exhibited a decreased enzymatic activity, compared to its monomeric form, exclusively encountered in benign breast specimens. The last observation, along with the quantitative reliable differentiation between benign and malignant breast tumors
    corecore