23 research outputs found

    Wetting Properties at Nanometer Scale

    Get PDF
    The proposed chapter reviews a series of experimental techniques which enable the accurate quantitative study of wetting properties. The introductive part presents some of the many phenomena and processes influenced by wetting, underlining the importance of understanding the fundamental science involved. A few historical considerations about the quantitative study of wetting and related phenomena are given. Next, some of the “classical” techniques employed for studies at the macroscopic scale are presented. The importance of studies of such phenomena at micro- and nanometer level is underlined, as a consequence of the enormous influence that micro- and nanodevices play in our day to day activities, and examples of quantitative studies, involving various measurement techniques, are given from literature. A description of the basic phenomena related to polarization forces in Scanning Polarization Force Microscopy (SPFM) technique is given, followed by experimental details concerning the actual implementation of the technique. Examples of applications of SPFM are given from literature (from the spreading of liquid crystals on solid substrates to studies of corrosion at nanometer level). Particularly, it is emphasized how this versatile technique was successfully used for direct measurements of contact angles for liquid micro- and nano-droplets, enabling the calculation of the dependence of surface potential energy between the surfaces, the spreading coefficient and the disjoining pressure for micro- and nano-droplets

    Phase transition and dynamics of defects in the molecular piezoelectric TMCM-MnCl3 and the effect of partial substitutions of Mn

    Get PDF
    We present dielectric and anelastic spectroscopy measurements of the molecular piezoelectric TMCM-MnCl3 and TMCM-Mn0.95M0.05Cl3 (M = Cu, Fe, Ni; TMCM = trimethylchlorometylammonium), whose powders were pressed into discs and bars and deposited as films on Si by Matrix-Assisted Pulsed Laser Evaporation (MAPLE). As in other molecular ferroelectrics, the dielectric permittivity e0 drops at the structural transition temperature TC, below which the number of directions that the polar TMCM molecules visit is reduced, with the formation of ferroelectric domains. Concomitantly, the Young’s modulus E starts increasing and the elastic energy loss has a step-like increase, attributable to the motion of the domain walls. Both the dielectric and elastic anomalies indicate the improper character of the ferroelectric transition, where the ordering of the molecular orientations is not driven by the cooperative interaction of their electric dipoles. Below room temperature, at least two thermally activated relaxation processes appear both in the dielectric and anelastic spectra, whose real and imaginary parts measured at several frequencies can be fit with the Havriliak–Negami formula. The microscopic parameters so-obtained indicate that they are due to point defects, and it is argued that they are Cl vacancies and their complexes with TMCM vacancies. The considerable width of these relaxation maxima is explained by the geometry of the hexagonal perovskite structure. The partial substitution of Mn with 5% Ni has little effect on the anelastic and dielectric spectra, while Cu and, especially, Fe cause a large enhancement of the losses attributed to domain wall relaxation, with substantial contributions also above TC. The condensation of water from the humidity in the powders compacted by cold pressing was observed and discussed. The piezoelectric activity of the films was assessed by PFM

    Oxygen-vacancy induced ferroelectricity in nitrogen-doped nickel oxide

    Get PDF
    This paper reports the onset of ferroelectricity in NiO by breaking the crystallographic symmetry with oxygen vacancies created by N doping. Nitrogen-doped NiO was grown at room temperature by RF sputtering of Ni target in Ar–O2–N2 plasma on silicon and fused silica substrates. The impact of the nitrogen doping of NiO on microstructural, optical, and electrical properties has been investigated. According to x-ray diffraction investigations, by increasing the N doping level in NiO, a transition from (002) to a (111) preferential orientation for the cubic NiO phase was observed, as well as a lattice strain relaxation, that is usually ascribed to structural defect formation in crystal. The x-ray diffraction pole figures the presence of a distorted cubic structure in NiO and supports the Rietveld refinement findings related to the strain, which pointed out that nitrogen doping fosters lattice imperfections formation. These findings were found to be in agreement with our far-infrared measurements that revealed that upon nitrogen doping a structural distortion of the NiO cubic phase appears. X-ray photo-emission spectroscopy measurements reveal the presence of oxygen vacancies in the NiO film following nitrogen doping. Evidence of ferro-electricity in nitrogen-doped NiO thin films has been provided by using the well-established Sawyer–Tower method. The results reported here provide the first insights on oxygen-vacancy induced ferroelectricity in nitrogen-doped nickel oxide thin films

    Mechanical and structural properties of composites made from recycled and virgin polyethylene terephthalate (PET) and metal chip or mesh wire

    No full text
    Although polyethylene terephthalate (PET) is a champion of recycling, intense research is being done to find new solutions for using recycled plastic. This study aims to characterize the mechanical andstructural properties (SEM- scanning electron microscopy) of products made from recycled metal swarf or mesh wire with recycled plastic (PET) in comparison with virgin plastic. Samples manufactured from virgin and recycled PET are made by pressing and high temperature. The loss of mechanical properties ofproducts made from recycled plastic is a major drawback that influences their use. SEM images confirm that the dispersion and distribution of the PET phase is not very uniform. By addition of virgin plastic in various compositions with recycled plastic, processing parameters and mechanical properties can be optimized

    Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density

    No full text
    The fabrication of complex, reproducible, and accurate micro-and nanostructured interfaces that impede the interaction between material’s surface and different cell types represents an important objective in the development of medical devices. This can be achieved by topographical means such as dual-scale structures, mainly represented by microstructures with surface nanopatterning. Fabrication via laser irradiation of materials seems promising. However, laser-assisted fabrication of dual-scale structures, i.e., ripples relies on stochastic processes deriving from laser–matter interaction, limiting the control over the structures’ topography. In this paper, we report on laser fabrication of cell-repellent dual-scale 3D structures with fully reproducible and high spatial accuracy topographies. Structures were designed as micrometric “mushrooms” decorated with fingerprint-like nanometric features with heights and periodicities close to those of the calamistrum, i.e., 200–300 nm. They were fabricated by Laser Direct Writing via Two-Photon Polymerization of IP-Dip photoresist. Design and laser writing parameters were optimized for conferring cell-repellent properties to the structures, even for high cellular densities in the culture medium. The structures were most efficient in repelling the cells when the fingerprint-like features had periodicities and heights of ≅200 nm, fairly close to the repellent surfaces of the calamistrum. Laser power was the most important parameter for the optimization protocol

    Influence of Laser-Designed Microstructure Density on Interface Characteristics and on Preliminary Responses of Epithelial Cells

    No full text
    International audienceCurrent trends in designing medical and tissue engineering systems rely on the incorporation of micro- and nano-topographies for inducing a specific cellular response within the context of an aimed application. As such, dedicated studies have recently focused on understanding the possible effects of high and low density packed topographies on the behavior of epithelial cells, especially when considering their long-term viability and functionality. We proposed to use stair-like designed topographies with three different degrees of distribution, all created in polydimethylsiloxane (PDMS) as active means to monitor cell behavior. Our model cellular system was human bronchial epithelial cells (BEAS-2B), a reference line in the quality control of mesenchymal stem cells (MSCs). PDMS microtextured substrates of 4 ”m square unit topographies were created using a mold design implemented by a KrF Excimer laser. Varying the spacing between surface features and their multiscale level distribution led to irregular stairs/lines in low, medium and high densities, respectively. Profilometry, scanning electron and atomic force microscopy, contact angle and surface energy measurements were performed to evaluate the topographical and interface characteristics of the designed surfaces, while density-induced cellular effects were investigated using traditional cell-based assays. Our analysis showed that microstructure topographical distribution influences the adhesion profiles of epithelial cells. Our analysis hint that epithelial organoid formation might be initiated by the restriction of cell spreading and migration when using user-designed, controlled micro-topographies on engineered surfaces

    Evaluating Renewable Energy Sustainability by Composite Index

    No full text
    Renewable energy is a global interest area in achieving sustainable development. Renewable energy sustainability has been assessed using the most commonly used dimensions of this concept: economic, environmental, social, and institutional dimensions. In this paper, we designed a composite index named the Renewable Energy Sustainability Index. The proposed index may represent a national monitoring mechanism that points out the strengths and weaknesses of a state in terms of renewable energy. The data were normalized by calculating the z-score. We tested the proposed index on a selection of 15 European countries ranked by final energy consumption and with different levels of development. The Kayser-Mayer-Olkin values were above the 0.700 limit, which indicates the robustness of each dimension. The proposed index reveals the development stages of renewable energy sustainability and can provide solutions to increase the sustainability of a country by improving positive impact indicators and mitigating negative impact indicators

    Phase Transition and Point Defects in the Ferroelectric Molecular Perovskite (MDABCO)(NH<sub>4</sub>)I<sub>3</sub>

    No full text
    We measured the anelastic, dielectric and structural properties of the metal-free molecular perovskite (ABX3) (MDABCO)(NH4)I3, which has already been demonstrated to become ferroelectric below TC= 448 K. Both the dielectric permittivity measured in air on discs pressed from powder and the complex Young’s modulus measured on resonating bars in a vacuum show that the material starts to deteriorate with a loss of mass just above TC, introducing defects and markedly lowering TC. The elastic modulus softens by 50% when heating through the initial TC, contrary to usual ferroelectrics, which are stiffer in the paraelectric phase. This is indicative of improper ferroelectricity, in which the primary order parameter of the transition is not the electric polarization, but the orientational order of the MDABCO molecules. The degraded material presents thermally activated relaxation peaks in the elastic energy loss, whose intensities increase together with the decrease in TC. The peaks are much broader than pure Debye due to the general loss of crystallinity. This is also apparent from X-ray diffraction, but their relaxation times have parameters typical of point defects. It is argued that the major defects should be of the Schottky type, mainly due to the loss of (MDABCO)2+ and I−, leaving charge neutrality, and possibly (NH4)+ vacancies. The focus is on an anelastic relaxation process peaked around 200 K at ∌1 kHz, whose relaxation time follows the Arrhenius law with τ0 ∌ 10−13 s and E≃0.4 eV. This peak is attributed to I vacancies (VX) hopping around MDABCO vacancies (VA), and its intensity presents a peculiar dependence on the temperature and content of defects. The phenomenology is thoroughly discussed in terms of lattice disorder introduced by defects and partition of VX among sites that are far from and close to the cation vacancies. A method is proposed for calculating the relative concentrations of VX, that are untrapped, paired with VA or forming VX–VA–VX complexes

    Scanning polarization force microscopy investigation of contact angle and disjoining pressure of glycerol and sulfuric acid on highly oriented pyrolytic graphite and aluminum

    No full text
    For liquid droplets of sub-micrometer dimensions, the study of wetting properties (quantified by contact angle, disjoining pressure, spreading coefficient, etc.) is possible using the relatively new technique known as scanning polarization force microscopy (SPFM). This non-contact scanning probe microscopy technique was successfully implemented in our laboratory in order to study the wetting properties of glycerol and sulfuric acid on the surface of highly oriented pyrolytic graphite (HOPG) and glycerol on aluminum film deposited on mica. An AC polarization bias of 3 V at 3 kHz frequency was applied between a conductive atomic force microscope tip and the substrate. The resulting polarization force was measured with high accuracy, allowing non-contact topography profile measurements of liquid micro- and nanodroplets. The dependence of the contact angle on droplet height was determined in order to calculate the values of the spreading coefficient and the disjoining pressure between the liquid and substrates. The calculated potential energies give disjoining pressure values of ∌0.4 atm for glycerol on HOPG, ∌0.47 atm for glycerol on aluminum and ∌13 atm for H2SO4 on HOPG. In the case of H2SO4 on HOPG the strength of the force appears to be thirty times bigger than that for glycerol on HOPG and aluminum

    Laser Direct Writing via Two-Photon Polymerization of 3D Hierarchical Structures with Cells-Antiadhesive Properties

    No full text
    We report the design and fabrication by laser direct writing via two photons polymerization of innovative hierarchical structures with cell-repellency capability. The structures were designed in the shape of “mushrooms”, consisting of an underside (mushroom’s leg) acting as a support structure and a top side (mushroom’s hat) decorated with micro- and nanostructures. A ripple-like pattern was created on top of the mushrooms, over length scales ranging from several ”m (microstructured mushroom-like pillars, MMP) to tens of nm (nanostructured mushroom-like pillars, NMP). The MMP and NMP structures were hydrophobic, with contact angles of (127 ± 2)° and (128 ± 4)°, respectively, whereas flat polymer surfaces were hydrophilic, with a contact angle of (43 ± 1)°. The cell attachment on NMP structures was reduced by 55% as compared to the controls, whereas for the MMP, a reduction of only 21% was observed. Moreover, the MMP structures preserved the native spindle-like with phyllopodia cellular shape, whereas the cells from NMP structures showed a round shape and absence of phyllopodia. Overall, the NMP structures were more effective in impeding the cellular attachment and affected the cell shape to a greater extent than the MMP structures. The influence of the wettability on cell adhesion and shape was less important, the cellular behavior being mainly governed by structures’ topography
    corecore