27 research outputs found

    3-D Registration on Carotid Artery imaging data: MRI for different timesteps

    Full text link
    A common problem which is faced by the researchers when dealing with arterial carotid imaging data is the registration of the geometrical structures between different imaging modalities or different timesteps. The use of the "Patient Position" DICOM field is not adequate to achieve accurate results due to the fact that the carotid artery is a relatively small structure and even imperceptible changes in patient position and/or direction make it difficult. While there is a wide range of simple/advanced registration techniques in the literature, there is a considerable number of studies which address the geometrical structure of the carotid artery without using any registration technique. On the other hand the existence of various registration techniques prohibits an objective comparison of the results using different registration techniques. In this paper we present a method for estimating the statistical significance that the choice of the registration technique has on the carotid geometry. One-Way Analysis of Variance(ANOVA) showed that the p-values were <0.0001 for the distances of the lumen from the centerline for both right and left carotids of the patient case that was studied.Comment: 4 pages, 4 figures, 1 table, preprint submitted to IEEE-EMBC 201

    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors

    Get PDF
    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors. Am J Physiol Heart Circ Physiol 304: H1455-H1470, 2013. First published March 15, 2013; doi:10.1152/ajpheart.00539.2012.-Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation

    Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data

    Get PDF
    Atherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention strategies. In this work, a novel computational model is developed, which is used for simulation of plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). The model is validated using the serial imaging of CTCA comparing the simulated geometries with the real follow-up arteries. Additionally, we examine the predictive capability of the model to identify regions prone of disease progression. The results presented good correlation between the simulated lumen area (P<0.0001), plaque area (P<0.0001) and plaque burden (P<0.0001) with the realistic ones. Finally, disease progression is achieved with 80% accuracy with many of the computational results being independent predictors

    Non-Invasive Prediction of Site-Specific Coronary Atherosclerotic Plaque Progression using Lipidomics, Blood Flow, and LDL Transport Modeling

    Get PDF
    Background: coronary computed tomography angiography (CCTA) is a first line non-invasive imaging modality for detection of coronary atherosclerosis. Computational modeling with lipidomics analysis can be used for prediction of coronary atherosclerotic plaque progression. Methods: 187 patients (480 vessels) with stable coronary artery disease (CAD) undergoing CCTA scan at baseline and after 6.2 +/- 1.4 years were selected from the SMARTool clinical study cohort (Clinicaltrial.gov Identifiers NCT04448691) according to a computed tomography (CT) scan image quality suitable for three-dimensional (3D) reconstruction of coronary arteries and the absence of implanted coronary stents. Clinical and biohumoral data were collected, and plasma lipidomics analysis was performed. Blood flow and low-density lipoprotein (LDL) transport were modeled using patient-specific data to estimate endothelial shear stress (ESS) and LDL accumulation based on a previously developed methodology. Additionally, non-invasive Fractional Flow Reserve (FFR) was calculated (SmartFFR). Plaque progression was defined as significant change of at least two of the morphological metrics: lumen area, plaque area, plaque burden. Results: a multi-parametric predictive model, including traditional risk factors, plasma lipids, 3D imaging parameters, and computational data demonstrated 88% accuracy to predict site-specific plaque progression, outperforming current computational models. Conclusions: Low ESS and LDL accumulation, estimated by computational modeling of CCTA imaging, can be used to predict site-specific progression of coronary atherosclerotic plaques.</div

    Coronary computed tomography angiography-based endothelial wall shear stress in normal coronary arteries

    Get PDF
    Endothelial wall shear stress (ESS) is a biomechanical force which plays a role in the formation and evolution of atherosclerotic lesions. The purpose of this study is to evaluate coronary computed tomography angiography (CCTA)-based ESS in coronary arteries without atherosclerosis, and to assess factors affecting ESS values. CCTA images from patients with suspected coronary artery disease were analyzed to identify coronary arteries without atherosclerosis. Minimal and maximal ESS values were calculated for 3-mm segments. Factors potentially affecting ESS values were examined, including sex, lumen diameter and distance from the ostium. Segments were categorized according to lumen diameter tertiles into small (= 3.2 mm) segments. A total of 349 normal vessels from 168 patients (mean age 59 +/- 9 years, 39% men) were included. ESS was highest in the left anterior descending artery compared to the left circumflex artery and right coronary artery (minimal ESS 2.3 Pa vs. 1.9 Pa vs. 1.6 Pa, p < 0.001 and maximal ESS 3.7 Pa vs. 3.0 Pa vs. 2.5 Pa, p < 0.001). Men had lower ESS values than women, also after adjusting for lumen diameter (p < 0.001). ESS values were highest in small segments compared to intermediate or large segments (minimal ESS 3.8 Pa vs. 1.7 Pa vs. 1.2 Pa, p < 0.001 and maximal ESS 6.0 Pa vs. 2.6 Pa vs. 2.0 Pa, p < 0.001). A weak to strong correlation was found between ESS and distance from the ostium (rho = 0.22-0.62, p < 0.001). CCTA-based ESS values increase rapidly and become widely scattered with decreasing lumen diameter. This needs to be taken into account when assessing the added value of ESS beyond lumen diameter in highly stenotic lesions

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography – comparison and registration with IVUS

    Get PDF
    BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    A Machine Learning Model for the Identification of High risk Carotid Atherosclerotic Plaques

    No full text
    Carotid artery disease is an inflammatory condition involving the deposition and accumulation of lipid species and leucocytes from blood into the arterial wall, which causes the narrowing of the carotid arteries on either side of the neck. Different imaging modalities can by implemented to determine the presence and the location of carotid artery stenosis, such as carotid ultrasound, computed tomography angiography (CTA), magnetic resonance angiography (MRA), or cerebral angiography. However, except of the presence and the degree of stenosis of the carotid arteries, the vulnerability of the carotid atherosclerotic plaques constitutes a significant factor for the progression of the disease and the presence of disease symptoms. In this study, our aim is to develop and present a machine learning model for the identification of high risk plaques using non imaging based features and non-invasive imaging based features. Firstly, we implemented statistical analysis to identify the most statistical significant features according to the defined output, and subsequently, we implemented different feature selection techniques and classification schemes for the development of our machine learning model. The overall methodology has been trained and tested using 208 cases of 107 cases of low risk plaques and 101 cases of high risk plaques. The highest accuracy of 0.76 was achieved using the relief feature selection technique and the support vector machine classification scheme. The innovative aspect of the proposed machine learning model is both the different categories of the utilized input features and the definition of the problem to be solved

    Patient-Specific Simulation of Coronary Artery Pressure Measurements: An In Vivo Three-Dimensional Validation Study in Humans

    Get PDF
    Pressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire, while testing the effect of different boundary conditions for the simulation. Eight coronary arteries (lumen and outer vessel wall) from six patients were reconstructed in three-dimensional (3D) space using intravascular ultrasound and biplane angiographic images. Pressure values at the distal and proximal end of the vessel and flow velocity values at the distal end were acquired with the use of a combo pressure-flow wire. The 3D lumen and wall models were discretized into finite elements; fluid structure interaction (FSI) and rigid wall simulations were performed for one cardiac cycle both with pulsatile and steady flow in separate simulations. The results showed a high correlation between the measured and the computed coronary pressure values (coefficient of determination [r2] ranging between 0.8902 and 0.9961), while the less demanding simulations using steady flow and rigid walls resulted in very small relative error. Our study demonstrates that computational assessment of coronary pressure is feasible and seems to be accurate compared to the wire-based measurements

    A proof-of-concept study for the simulation of blood flow in a post arterial segment for different blood rheology models

    No full text
    : Cardiovascular disease (CVD) and especially atherosclerosis are chronic inflammatory diseases which cause the atherosclerotic plaque growth in the arterial vessels and the blood flow reduction. Stents have revolutionized the treatment of this disease to a great extent by restoring the blood flow in the vessel. The present study investigates the performance of the blood flow after stent implantation in patient-specific coronary artery and demonstrates the effect of using Newtonian vs. non-Newtonian blood fluid models in the distribution of endothelial shear stress. In particular, the Navier-Stokes and continuity equations were employed, and three non-Newtonian fluid models were investigated (Carreau, Carreau-Yasuda and the Casson model). Computational finite elements models were used for the simulation of blood flow. The comparison of the results demonstrates that the Newtonian fluid model underestimates the calculation of Endothelial Shear Stress, while the three non-Newtonian fluids present similar distribution of shear stress. Keywords: Blood flow dynamics, stented artery, non-Newtonian fluid. Clinical Relevance- This work demonstrates that when blood flow modeling is performed at stented arteries and predictive models are developed, the non-Newtonian nature of blood must be considered
    corecore