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Abstract: Background: coronary computed tomography angiography (CCTA) is a first line non-
invasive imaging modality for detection of coronary atherosclerosis. Computational modeling
with lipidomics analysis can be used for prediction of coronary atherosclerotic plaque progression.
Methods: 187 patients (480 vessels) with stable coronary artery disease (CAD) undergoing CCTA
scan at baseline and after 6.2 ± 1.4 years were selected from the SMARTool clinical study cohort
(Clinicaltrial.gov Identifiers NCT04448691) according to a computed tomography (CT) scan image
quality suitable for three-dimensional (3D) reconstruction of coronary arteries and the absence of
implanted coronary stents. Clinical and biohumoral data were collected, and plasma lipidomics
analysis was performed. Blood flow and low-density lipoprotein (LDL) transport were modeled
using patient-specific data to estimate endothelial shear stress (ESS) and LDL accumulation based
on a previously developed methodology. Additionally, non-invasive Fractional Flow Reserve (FFR)
was calculated (SmartFFR). Plaque progression was defined as significant change of at least two of
the morphological metrics: lumen area, plaque area, plaque burden. Results: a multi-parametric
predictive model, including traditional risk factors, plasma lipids, 3D imaging parameters, and
computational data demonstrated 88% accuracy to predict site-specific plaque progression, outper-
forming current computational models. Conclusions: Low ESS and LDL accumulation, estimated
by computational modeling of CCTA imaging, can be used to predict site-specific progression of
coronary atherosclerotic plaques.

Keywords: prediction of plaque progression; computational modeling; endothelial shear stress; LDL
transport; non-invasive FFR
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1. Introduction

Coronary artery disease (CAD) clinical manifestations are one of the most common
causes of death worldwide [1]. Cardiovascular risk factors and systemic lipid profiles
are known to be associated with development of CAD. Reliable interpretation of coro-
nary angiography using coronary computed tomography angiography (CCTA) requires
sophisticated knowledge of normal coronary artery anatomy, pathophysiology of coronary
artery atherosclerosis and congenital anomalies, characteristic features of coronary artery
disease and its CCTA representation, the technology used and its limitations, the use of
heart-specific three-dimensional interpretation software, and the ability to identify and
overcome image artifacts in the available image dataset [2]. Computational modeling of in-
vasive coronary imaging has been recently employed to investigate CAD pathophysiology
and, in particular, the possible relationship between low endothelial shear stress (ESS) and
plaque progression [3,4]. CCTA derived blood flow modeling and imaging characteristics
were also recently used for the development of non-invasive predictive models of disease
progression [5,6].

Besides blood rheology, computational modeling was recently used to describe the
lipid accumulation in the arterial wall [7,8], which, in their majority, are in agreement
with experimental findings [9]. The deployment of these models in a patient’s database
demonstrated that high accumulation of low-density lipoprotein (LDL) particles in the
arterial wall is a predictor of disease progression [10].

The possible interaction of clinical risk factors and lipid profile with CCTA imaging
characteristics as well as the combination of computational modeling of blood rheology
with LDL transport and accumulation have not yet been investigated, with the aim of
developing predictive models of coronary plaque progression. We hypothesized that com-
bining systemic cardiovascular risk factors with local imaging and modeling characteristics
in a multi-level model could help identify which arterial site, within the whole coronary
tree, is more likely to undergo plaque formation/growth in a single patient with a given
generic atherosclerosis progression risk. To this purpose, we examined, for the first time,
the combined effect of lipidomics derived biomarkers and computational modeling of
coronary arteries in 187 patients, with low to medium CAD risk, recruited in the H2020
SMARTool clinical study. Data were collected at two time points with an interscan period
of 6 ± 2 years. ESS calculation, estimation of LDL transport, and non-invasive Fractional
Flow Reserve (FFR) calculation was performed to 480 vessels.

2. Materials and Methods
2.1. Study Design

A prospective, multicenter study in patients who underwent serial coronary CTA was
conducted during the H2020 SMARTool project (Clinicaltrial.gov Identifiers
NCT04448691) [11]. White patients were included by 7 centers from 5 European countries.
The study protocol was approved by all local ethical committees, all patients gave their
written informed consent to participate in the study, and the procedures followed were
in accordance with institutional guidelines. Patients who previously underwent coro-
nary CCTA for suspected CAD, as part of the Evaluation of Integrated Cardiac Imaging
for the Detection and Characterization of Ischemic Heart Disease (EVINCI); FP7-222915;
n = 152) [12] or ARTreat (FP7-224297; n = 18) [13] clinical studies, were prospectively
included to undergo follow-up coronary CTA. Additionally, patients who underwent coro-
nary CCTA in the period 2009 to 2012 for clinical indications (n = 32) and were not originally
included in the EVINCI and ARTreat studies were also prospectively included. A full list
of inclusion and exclusion criteria is provided in the Supplementary Materials. Among
the final SMARTool population, consisting of 263 patients, 187 patients were selected for
this study based on the image quality of baseline CCTA as well as on the existence of
stented arteries as shown in the Figure 1. For each patient, clinical risk factors, biohumoral
variables, and lipidomics data had been collected, and CCTA examination was performed
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at two time points, i.e., at baseline and at follow-up (mean follow-up 6.22 ± 1.42 years,
range of follow-up period: 1.86−11.3 years).
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Figure 1. Inclusion and exclusion criteria of the current study.

2.2. Lipidomics Analysis

Plasma samples of all patients, stored at –80 ◦C, were thawed at room temperature and
immediately subjected to lipid extraction and analysis. Total lipid extraction from an aliquot
of plasma was performed according to Folch procedure [14]. Calibration standard and
plasma sample analysis was performed by liquid chromatography–electrospray ionization–
tandem mass spectrometry. Different volumes of calibration Standards (STDs)/plasma
samples were injected: 0.5 µL for STDs 1,2-phosphatidyl ethanolamine: PE(15:0)(15:0)
and Ceramides: Cer(d18:1/17:0); 0.1 µL for STDs cholesterol esters: CE(17:0), Triacyl glyc-
erol: TG(17:0/17:0/17:0), sphingomyelin: SM(d18:1/16:0), and 1,2-phosphatidyl choline:
PC(17:0)(17:0); 0.5 µL for plasma samples, as such, and 0.1 µL for plasma samples diluted
5-fold to avoid mass spectrometer saturation, due to the high concentration levels of these
lipid species in plasma. Each injection was repeated in triplicate for each lipid standard to
evaluate the reproducibility of the procedure. Lipid species absolute concentrations were
calculated considering their area ratio (lipid peak area/internal Standards (ISTD) peak
area) and interpolating it within the calibration curve of the corresponding external stan-
dard. MultiQuant 2.1 software (SCIEX, Concord, Canada) was used for lipid quantification.
The lipids structures are presented in Annex 1.

2.3. CCTA Analysis and Three-Dimensional (3D) Reconstruction

In each of the 187 patients included in the current study, the right coronary artery
(RCA), the left anterior descending artery (LAD), and the left circumflex artery (LCx) were
analyzed. Baseline and follow-up CCTA scans were co-registered using landmarks, such
as the bifurcations and calcified objects. Three-dimensional (3D) reconstruction of the
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coronary lumen and outer vessel wall was performed using an in-house software, which
provided measurements of lumen area, plaque area and plaque burden as previously
described and validated by intravascular ultrasound – virtual histology (IVUS-VH) and
manual annotations (11). RCA was reconstructed as a single arterial segment, while the
left main was reconstructed, including the LAD and LCx as side branches.

2.4. Blood Flow, LDL Transport Modeling, and Non-Invasive FFR Calculation

The finite element method was employed for modeling blood flow and LDL transport
in the baseline CCTA 3D reconstructed geometries. A previously employed methodology
is implemented for the solution of the Navier-Stokes equations [5]. ESS is calculated as
the product of the shear rate at the endothelial membrane and the blood viscosity (µ) [15].
The modeling of LDL transport is achieved by solving the convection-diffusion equations
in the lumen and the arterial wall. The patient-specific LDL blood concentration values
at baseline blood tests was applied at the inlet of the geometries. Moreover, the patient-
specific baseline blood pressure values were used to account for the effects of different
pressure on the accumulation of LDL particles. The full details of the methodology have
been reported elsewhere [7]. The SmartFFR calculation process and validation results have
been previously described [16]. Briefly, a transient blood flow simulation of an increasing
flow rate was used (i.e., 0 to 4 mL/s) to calculate the ratio of distal to proximal pressure
over the examined coronary segment for the aforementioned flow range, normalized by
the ratio over this range for a completely healthy arterial segment, providing a measure of
hemodynamic significance, which is numerically equivalent to the average of the computed
pressure ratio over this flow range.

2.5. Statistics

For the analysis, we divided the arterial segments into 3 mm segments, which allows
the association of plaque progression with computational results. We have calculated
for each 3mm segment the lumen area, the plaque area, the plaque burden. The local
ESS (defined as the minimum averaged ESS in an arc of 90◦) and the LDL concentration
value (defined as the maximum averaged LDL concentration in an arc of 90◦) were calcu-
lated. The computationally calculated LDL concentration is presented normalized by the
patient-specific serum LDL concentration (dimensionless). A single value of SmartFFR per
vessel was defined. Besides these vascular variables, patient specific cardiovascular risk
factors, circulating biohumoral markers, and lipid species from lipidomics analysis were
entered in the statistical models. Baseline imaging characteristics, calculated ESS and LDL
concentration values, and the patients’ clinical and biohumoral data were associated with
the progression of CAD, employing linear regression analysis. The associated variables
(p < 0.1) were entered in a multivariate model considering potential co-linearity between
the variables. Variables with >50% missing values were excluded from the analysis. Inde-
pendent predictors of CAD progression were assessed by a randomized multi-level mixed
binary regression model. A receiver operating characteristic (ROC) curve analysis was
implemented for the transformation of continuous variables to binary. Data analysis was
performed using the SAS version 9.3 (SAS Institute). A p-value < 0.05 was considered
statistically significant.

3. Results

Baseline demographical and clinical characteristics of the study population are sum-
marized in Table 1.
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Table 1. Baseline demographics, clinical and biohumoral data.

All Patients (N = 187)

Age (years) 60.73 ± 8.11
Gender (male) 107 (57.2%)

BMI 27.31 ± 3.52
Current smoker 25 (13.4%)

Family history of CAD 92 (49.2%)

Risk factors

Diabetes mellitus 27 (14.4%)
Hypertension 111 (59.4%)
Dyslipidemia 127 (67.9%)

Obesity 33 (17.6%)

Clinical presentation *

Atypical angina 86 (46.0%)
Typical angina 48 (25.7%)

Other symptoms 22 (11.8%)
No symptoms 12 (6.4%)

Imaging presentation

No CAD 47 (25.1%)

Non-obstructive CAD 113 (60.4%)

Obstructive CAD 27 (14.4%)

Biohumoral data

Total cholesterol 190.60 ± 49.50
Low density lipoprotein (LDL) cholesterol 114.09 ± 42.39
High density lipoprotein (HDL) cholesterol 54.27 ± 17.37

Triglycerides 112.79 ± 57.03
Glucose 105.50 ± 24.04

Studied vessels (n = 480)

Left anterior descending artery 162 (33.75%)
Left circumflex coronary artery 144 (30.00%)

Right coronary artery 174 (36.25%)

Medications at discharge

Aspirin 100 (53.77%)
ARB 32 (17.1%)

Beta-blockers 67 (35.8%)
ACE inhibitors 50 (26.7%)

Calcium channel blockers 28 (15.0%)
Statins 85 (45.5%)

BMI, body mass index; CAD: coronary artery disease; ARB, Angiotensin II Receptor Blockers; ACE, Angiotensin-
converting enzyme. * Clinical classification was based on European Society of Cardiology (ESC) guidelines
[17].

From the 187 patients included in the current study, baseline geometries of 480 arteries
were used for blood flow and LDL transport modeling. The final dataset included 174
RCAs, 162 LADs, and 144 LCXs. A total of 4000 3 mm segments were finally analyzed for
baseline imaging characteristics, modeling results, and changes from baseline to follow-up.
To our knowledge, this is the largest dataset, where blood flow and LDL transport modeling
is performed for the prediction of atherosclerotic progression. A post-hoc power analysis
was performed to calculate the power of our population for the prediction of atherosclerotic
disease progression. We used an effect size f2 = 0.135 based on the calculation of r2; a = 0.05;
total sample size of 187 patients (4000 arterial segments); max 15 tested predictors included
in the final model for multiple linear regression analysis. Based on these, we observe
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power = 0.90. A patient example with ESS and LDL concentration results is shown in
Figure 2.
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Figure 2. Example of a patient case as analyzed using the developed software. Panels A and B present the segmentation
results, panel C shows the calculated SmartFFR for one branch, as well as metrics of lumen and wall area and plaque
burden among the vessel’s length. Panel D presents the reconstructed geometry back-projected on the coronary computed
tomography angiography (CCTA) volume rendering and panel E shows the ESS distribution on the analyzed vessel.

Average values of imaging variables including lumen area, plaque volume and plaque
burden for the 4000 analyzed coronary segments are reported for baseline and follow up
CCTA scans in Table 2 together with computational modeling results at baseline.

3.1. Prediction of Plaque Progression

Overall plaque progression was defined for each 3 mm segment according to the
presence of at least two of three conditions: reduction of lumen area by >20%, increase of
plaque area by >20%, increase of plaque burden by >20%. Over the 4000 coronary segments
analyzed, 1557 (39%) showed plaque progression. CCTA imaging and computational
modeling data in segments without or with evidence of plaque progression are compared
in Table 3.
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Table 2. CCTA imaging variables at baseline and follow-up and results of computational modeling of endothelial shear
stress (ESS), LDL concentration and calculation of SmartFFR at baseline.

Baseline Follow-Up Delta

Mean Std. Dev. Mean SD p-Value Baseline
vs. Follow-Up Mean SD

p-Value Baseline vs.
Change between
Follow-Up and

Baseline

Lumen area (mm2) 6.86 3.89 6.34 3.90 <0.0001 −0.56 2.95 <0.0001
Plaque area (mm2) 7.16 4.30 7.29 4.62 <0.0001 0.14 4.41 <0.0001

Plaque burden 51.02 14.66 52.96 17.85 <0.0001 1.79 19.27 <0.0001
Minimum ESS (Pa) 1.78 2.36

Normalized max.
LDL concentration 0.24 0.12

SmartFFR 0.89 0.12

Table 3. Same variables as in Table 2 in segments without plaque progression (N = 1556) and with plaque progression
(N = 2443).

Baseline Follow-up Delta

Mean SD Mean SD p-Value Baseline
vs. Follow-up Mean SD

p-Value
Baseline
vs. Delta

Segments
with

progression
N = 1557

Lumen area (mm2) 7.47 3.92 5.74 3.75 <0.0001 −1.79 2.73 <0.0001
Plaque area (mm2) 6.02 3.68 9.17 4.75 <0.0001 3.38 3.63 <0.0001

Plaque burden 44.52 13.28 62.48 14.16 <0.0001 18.89 11.43 <0.0001
Minimum ESS (Pa) 1.61 1.72

Normalized max.
LDL concentration 0.24 0.12

SmartFFR 0.91 0.09

Segments
without

progression
N = 2443

Lumen area (mm2) 6.47 3.83 6.72 3.95 <0.0001 0.18 2.83 <0.0001
Plaque area (mm2) 7.88 4.50 6.12 4.13 <0.0001 −1.81 3.62 <0.0001

Plaque burden 55.16 13.99 47.04 17.35 <0.0001 −8.44 15.35 <0.0001
Minimum ESS (Pa) 2.00 2.89

Normalized max.
LDL concentration 0.24 0.12

SmartFFR 0.88 0.14

At univariate linear regression analysis, older age, higher blood concentrations of
triglycerides, and some specific lipid species (CE_18_3, CE_20_3, CE_20_4, PC_36_0,
PC_36_3, TG_54_2__TG_18_1_18_18_0, PS_38_6, PS_40_6, SM_42_1) were associated with
plaque progression (Table 4). Among the baseline morphological and computational CCTA
variables, lower plaque burden, lower minimum ESS, higher maximal LDL concentration,
and higher SmartFFR were all associated with plaque progression. However, at multivari-
ate linear regression analysis only age (p = 0.0067) and lower baseline plaque burden (p <
0.0001) remained independently associated with plaque progression. The univariate and
multivariate logistic regression analysis for the prediction of plaque progression confirmed
the previous results (Table 5).
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Table 4. Univariate and multivariate linear regression analysis for association of relevant baseline clinical/biohumoral and
CCTA variables with single components of plaque progression and their combination.

Dependent
Variable Effect

Univariate Linear Regression Analysis Multivariate Linear Regression
Analysis

Estimated Regression
Coefficient (95% CI) p-Value Estimated Regression

Coefficient (95% CI) p-Value

Plaque progression
(at least 2 out of 3

of the criteria
below)

Age (years) 0.006 (0.000 to 0.012) 0.0429 0.011 (0.003 to 0.019) 0.0067

Triglycerides
(mg/dl) 0.001 (0.000 to 0.002) 0.0417 0.001 (−0.001 to 0.002) 0.2955

CE_18_3 (µM) 0.003 (0.001 to 0.005) 0.0138 0.001 (−0.003 to 0.004) 0.7102

CE_20_3 (µM) 0.008 (0.003 to 0.014) 0.0043 0.006 (−0.006 to 0.018) 0.3336

CE_20_4 (µM) 0.002 (0.000 to 0.003) 0.0203 0.000 (−0.003 to 0.004) 0.7980

PC_36_0 (µM) 0.009 (−0.001 to 0.018) 0.0845 - -

PC_36_3 (µM) 0.000 (−0.000 to 0.001) 0.0756 - -

TG_54_2__TG_18_1_18_18_0
(µM) 0.002 (−0.000 to 0.004) 0.0872 - -

PS_38_6 (µM) 0.169 (0.017 to 0.321) 0.0292 −0.128 (−0.374 to 0.118) 0.3046

PS_40_6 (µM) 0.325 (−0.054 to 0.705) 0.0921 - -

SM_42_1 (µM) 0.002 (−0.000 to 0.005) 0.0892 - -

Baseline plaque
burden

−0.012 (−0.013 to
−0.011) <.0001 −0.011 (−0.013 to

−0.010) <0.0001

Minimum ESS (Pa) −0.056 (−0.074 to
−0.038) <0.0001 0.004 (−0.004 to 0.011) 0.3653

Maximum LDL
concentration 0.075 (0.045 to 0.105) <.0001 −0.004 (−0.033 to 0.024) 0.7593

SmartFFR 0.385 (0.116 to 0.654) 0.0052 −0.027 (−0.379 to 0.326) 0.8816

Lumen area
reduction by 20%

Diabetes Mellitus −0.180 (−0.316 to
−0.045) 0.0093 0.068 (−0.152 to 0.289) 0.5393

Hypertension −0.077 (−0.161 to 0.006) 0.0700 −0.101 (−0.229 to 0.028) 0.1221

CE_16_0 (µM) −0.000 (−0.000 to
−0.000) 0.0330 −0.000 (−0.001 to 0.000) 0.5564

CE_16_1 (µM) −0.000 (−0.001 to 0.000) 0.0609 −0.000 (−0.001 to 0.000) 0.5856

CE_18_1 (µM) −0.000 (−0.000 to
−0.000) 0.0439 0.000 (−0.000 to 0.000) 0.8448

PS_36_1 (µM) 0.007 (−0.001 to 0.015) 0.0865 −0.000 (−0.001 to 0.001) 0.7504

Baseline plaque
burden

−0.006 (−0.007 to
−0.006) < 0.0001 −0.004 (−0.005 to

−0.002) <0.0001

Minimum ESS (Pa) −0.102 (−0.117 to
−0.088) < 0.0001 −0.021 (−0.027 to

−0.014) <0.0001

Maximum LDL
concentration 0.118 (0.093 to 0.142) < 0.0001 0.057 (0.017 to 0.097) 0.0051

SmartFFR 0.226 (0.011 to 0.441) 0.0394 0.087 (−0.219 to 0.394) 0.5720
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Table 5. Univariate and multivariate binary logistic regression analysis for the plaque progression and lumen area decrease.

Dependent
Variable Effect

Univariate Logistic Regression
Analysis

Multivariate Logistic Regression
Analysis

Odds Ratio p-Value Odds Ratio p-Value

Plaque progression

Age (years) 1.028 (1.001 to 1.056) 0.0401 1.067 (1.023 to 1.114) 0.0026

Triglycerides (mg/dl) 1.004 (1.000 to 1.009) 0.0605 1.000 (0.992 to 1.009) 0.9453

CE_16_1 (µM) 1.002 (1.000 to 1.004) 0.0650 1.002 (1.000 to 1.005) 0.0751

CE_18_3 (µM) 1.011 (1.003 to 1.019) 0.0095 1.004 (0.979 to 1.030) 0.7523

CE_20_3 (µM) 1.035 (1.011 to 1.060) 0.0043 1.021 (0.959 to 1.086) 0.5153

CE_20_4 (µM) 1.006 (1.000 to 1.013) 0.0552 1.002 (0.982 to 1.023) 0.8269

PC_36_0 (µM) 1.044 (0.999 to 1.091) 0.0534 1.025 (0.950 to 1.106) 0.5219

TG_54_2__TG_18_1
_18_1_18_0 (µM) 1.008 (0.999 to 1.016) 0.0783 1.009 (0.996 to 1.022) 0.1831

PS_38_5 (µM) 1.512 (1.006 to 2.275) 0.0469 2.742 (1.116 to 6.734) 0.0278

SM_38_1 (µM) 1.017 (0.999 to 1.034) 0.0581 1.032 (0.987 to 1.079) 0.1717

SM_42_1 (µM) 1.012 (1.000 to 1.023) 0.0464 1.029 (1.005 to 1.054) 0.0168

Baseline lumen area
(mm2) 1.882 (1.493 to 2.371) < 0.0001 1.171 (0.776 to 1.767) 0.4517

Baseline plaque area
(mm2) 2.613 (2.140 to 3.191) < 0.0001 1.626 (1.117 to 2.366) 0.0112

Baseline plaque
burden 1.066 (1.053 to 1.079) < 0.0001 1.066 (1.044 to 1.087) <0.0001

SmartFFR 5.671 (1.751 to 18.370) 0.0038 1.043 (0.773 to 1.407) 0.7814

Minimum ESS (Pa) 1.194 (1.081 to 1.319) 0.0005 1.069 (0.737 to 1.550) 0.7239

Maximum LDL
concentration 1.164 (0.992 to 1.367) 0.0634 1.094 (0.170 to 7.038) 0.9245

Lumen reduction

Hypertension 1.570 (1.017 to 2.423) 0.0418 1.599 (1.025 to 2.495) 0.0385

Age (years) 1.026 (1.001 to 1.052) 0.0436 1.001 (0.965 to 1.038) 0.9622

Diabetes 2.025 (1.083 to 3.788) 0.0272 1.085 (0.514 to 2.289) 0.8305

Hypertension 1.644 (1.029 to 2.626) 0.0377 3.116 (1.595 to 6.089) 0.0009

Triglycerides (mg/dl) 1.004 (1.000 to 1.007) 0.0634 1.003 (0.996 to 1.010) 0.3980

Cer_d18_1_16_0 (µM) 1.110 (0.985 to 1.250) 0.0859 1.192 (1.017 to 1.397) 0.0297

CE_16_0 (µM) 1.001 (1.000 to 1.002) 0.0039 1.001 (0.998 to 1.004) 0.3945

CE_16_1 (µM) 1.002 (1.000 to 1.003) 0.0077 1.000 (0.998 to 1.003) 0.7316

CE_18_1 (µM) 1.001 (1.000 to 1.001) 0.0131 1.000 (0.999 to 1.002) 0.5703

SM_36_2 (µM) 1.040 (1.000 to 1.081) 0.0513 1.148 (0.999 to 1.318) 0.0511

SM_38_2 (µM) 1.080 (1.007 to 1.158) 0.0319 1.097 (0.855 to 1.408) 0.4665

Baseline lumen area 2.904 (2.271 to 3.713) <0.0001 1.974 (1.230 to 3.166) 0.0048

Baseline plaque
burden 1.038 (1.025 to 1.051) <0.0001 1.018 (1.000 to 1.037) 0.0456

SmartFFR 3.271 (1.103 to 9.704) 0.0327 1.399 (0.179 to 10.901) 0.7488

Minimum ESS (Pa) 1.656 (1.470 to 1.865) <0.0001 1.516 (1.165 to 1.972) 0.0020

Maximum LDL
concentration 1.612 (1.341 to 1.938) <0.0001 1.326 (0.864 to 2.034) 0.0014
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3.2. Prediction of Single Features of Plaque Progression

The association of clinical, biohumoral, and CCTA variables with single features of
plaque progression (i.e., lumen area reduction, plaque area increase, and plaque burden
increase) are also reported in Tables 4 and 5. Interestingly, baseline plaque burden and
computational modeling results were all strongly associated with lumen area reduction.
The binary logistic regression model showed that hypertension (p = 0.0009), lower baseline
plaque burden (p < 0.0456), low ESS (p = 0.0020) and the high accumulation of LDL
(p = 0.0014) are independent predictors of lumen reduction by > 20%. The association
results for plaque area and plaque burden change are also presented in Tables S1 and S2,
with age and lower baseline plaque burden being the best predictors.

3.3. Interaction of ESS, LDL Concentration, and SmartFFR to Predict Plaque Progression

To assess the possible additional role of computational modeling in predicting overall
plaque progression, a stepwise approach was followed, and for each model, the predictive
accuracy, sensitivity, and specificity were calculated. The accuracy of a simple predictive
model including age was 72%, but with zero sensitivity. The lipidomics based prediction
accuracy, sensitivity, and specificity were 0.74, 0.38, and 0.93, respectively. Using only the
imaging based features (morphological and computational results) accuracy, sensitivity,
and specificity were significantly increased to 0.88, 0.92, and 0.81, respectively. Finally, the
combination of all categories of features resulted in accuracy, sensitivity, and specificity of
0.88, 0.91, and 0.84, respectively. Figure 3 presents the ROC curve analysis comparing the
effect of each different feature set.
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4. Discussion

In the present study, we demonstrate that lipidomics in combination with compu-
tational modeling can be used for the prediction of atherosclerotic plaque progression.
Overall plaque progression was defined when at least two out of the following three condi-
tions occurred: 20% lumen reduction, 20% plaque increase, 20% plaque burden increase.
In the current literature, there is not a fixed threshold for each of the three parameters to
define the progression of an atherosclerotic plaque. Several studies have applied different
thresholds ranging from around 10% to more than 20% change [6,18]; thus, using a conser-
vative approach, we selected the highest threshold. In the current analysis, several cut-offs
were examined considering that <15% was not investigated because it is questionable that
CCTA can assess minor plaque change, and >25% was not examined because few patients
present such disease progression. The cut-off of 20% presented the best balance between
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the patients without (N = 1556) and with plaque progression (N = 2443) at 3 mm segment
analysis. We performed 3D reconstruction of 480 main coronary vessels from 187 patients
for blood flow and LDL transport modeling.

The results of the present study show that a lower baseline plaque burden coupled
with a lower ESS and a higher LDL accumulation in the vessel wall are good predictors of
coronary plaque progression, in particular of lumen coronary reduction >20% in a 6-year
follow-up interval. CCTA, in combination with computational modeling, showed 88%
accuracy for the prediction of plaque progression. Additionally, computational modeling
affects the predictability of the results, since in most individual cases, a low minimum ESS
or an increased accumulation of LDL at baseline are associated with plaque progression
or lumen reduction. SmartFFR can also be used as an additional predictor, even if not
independently associated at multivariate analysis.

Prediction of atherosclerotic plaque growth was attempted in previous studies, mainly
based on invasive imaging modalities, where increased plaque burden at baseline and
low ESS have been reported as independent predictors of plaque progression, in terms
of lumen narrowing [3,19]. Those findings are partially in agreement with the present
results. Low ESS was also a predictor of plaque progression in these studies, while baseline
plaque burden showed the opposite results with our study. This discrepancy can be due to
the specific characteristics of the SMARTool population, which included mainly patients
with a low prevalence of obstructive CAD at enrolment. In this population, the majority
of patients showing a relatively low coronary atherosclerotic burden were more likely to
develop plaque progression. The incremental prediction value of biomechanical factors
and ESS was already demonstrated [3,5,10].

CCTA efficacy and high cost-effectiveness is well known [20,21]. Its applicability
and capacity to detect cardiovascular disease has been further improved recently by the
introduction of advanced technology, allowing higher spatial and temporal resolution with
increased imaging quality and reduced radiation exposure. Our study demonstrated that
computational modeling of non-invasive coronary imaging by CCTA may allow accurate
prediction of plaque progression without the need of invasive procedures and may warrant
a cost-effective prevention of CAD. Studies focused on serial CCTA imaging to assess
disease progression using blood flow simulation to estimate ESS have also demonstrated,
in accordance with our findings, that low ESS is an independent predictor of lumen reduc-
tion or plaque burden increase [5,6]. The addition of the more advanced computational
modeling of LDL transport and accumulation in the arterial wall increases the predictability
results even more [10]. Our results were obtained in a larger population at medium–low
risk and with a low prevalence of obstructive CAD. These patients could benefit most from
an accurate non-invasive prediction of disease progression to target a preventive more
aggressive medical treatment. Our results further support the argument that predictive
models, including non-invasive evidence of low ESS, high concentration of LDL, and spe-
cific baseline morphological characteristics improve the prediction of plaque progression
over traditional risk factors.

There is growing evidence that CCTA virtual FFR can be used as a substitute of
invasive FFR for the functional assessment of coronary obstructive disease [21–23]. Our
study demonstrates that non-invasive FFR can also be used as a predictor of disease
progression and not only for diagnostic purposes. To our knowledge, this is the first time
that non-invasive FFR is calculated in a serial patient database for prediction purposes,
though the association of higher values of SmartFFR with plaque progression was not
significant at multivariate analysis, a finding which possibly requires further investigation.

Finally, a novelty of this study is the inclusion of the patients’ plasma lipidomics into
the development of the predictive models. Previously, it was shown that several circulating
lipid species are associated with the diagnosis of CAD and some species were also identified
as biomarkers of disease progression [24]. Our work confirms that lipidomics can be used
to predict plaque progression. Its combination with the morphological and computational
CCTA parameters increased to 88% the predictive accuracy of the final model. In our work,
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45.5% of the patients were under statins treatment. These patients were either dyslipidemic
or obstructive CAD patients. Statin use was associated with an increased progression of
calcified coronary plaque and a reduced progression of non-calcified coronary plaque as
already reported for the whole SMARTool population [11]. Therefore, overall plaque area,
plaque burden and lumen area changes were not significantly affected by statin use.

This work has some main limitations. First, about half of the population was under
treatment with statins and all patients under antianginal and/or risk factor modifying
medication during the follow-up period. Treatment is expected to variably affect plaque
progression beyond baseline morphological and functional coronary features. Another
limitation is that the threshold to define progression was selected arbitrary. In this study,
we set the threshold considering the distribution of disease progression among the patients
as well as previously selected cut-off values (6). Further work is needed with a reverse en-
gineering analysis approach to identify the optimal threshold, which enables the prediction
of disease progression with greater accuracy and reliability.

5. Conclusions

The possibility to predict the evolution of coronary atherosclerosis is highly relevant to
ensure a safe and effective management of CAD patients in stable clinical conditions. More
recently, predictive models based on CCTA imaging and computational results have been
introduced to predict CAD progression. Traditional risk factors play a role on atherosclero-
sis progression at a systemic level, while site-specific hemodynamic conditions and lipid
transport influence progression of single coronary plaques at a local level. Combining the
two types of effects, our model was able to increase the predictive accuracy for coronary
plaque progression to 88%. The proposed computational model could be used in the
clinical practice as a prognostic decision support algorithm for the management of CAD
using the outcomes to monitor effectively and non-invasively the patients with increased
probability of CAD progression.
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multivariate binary logistic regression analysis for the plaque progression and lumen area decrease.
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