81 research outputs found

    Haemophilia B Curative FIX Production from a Low Dose UCOE-based Lentiviral Vector Following Hepatic Pre-natal Delivery

    Get PDF
    The ubiquitous chromatin opening element from the human HNRPA2B1-CBX3 housekeeping gene locus (A2UCOE) is able to provide stable and cell-to-cell reproducible levels of transgene expression regardless of target cell genome integration site with efficacy demonstrated in adult, embryonic and induced pluripotent stem cells and their differentiated progeny in vitro and in vivo. Here we evaluate the ability of A2UCOE-based lentiviral vectors to confer stable expression following pre-natal delivery in mice. Our results show stable post-natal A2UCOE-eGFP and A2UCOE-luciferase lentiviral vector presence in both the liver and haematopoietic system with concomitant persistence of expression demonstrating efficient transduction of both fetal liver and haematopoietic stem cells. In addition, we find that an A2UCOE-FIX lentiviral vector produces comparable amounts of plasma FIX protein to that obtained from a SFFV-FIX construct. Furthermore, the A2UCOE-FIX vector shows that at a low (0.19) average vector copy number per liver cell, it can provide stable levels of plasma FIX production, which would convert severe haemophilia B (<1%) to a mild phenotype (≈20%). Our results provide proof-ofprinciple for low dose pre-natal A2UCOE-based LV delivery to the liver as a therapeutic option for haemophilia B and potentially other metabolic conditions

    Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126.

    Get PDF
    Chemical pollutant exposure is a risk factor contributing to the growing epidemic of non-alcoholic fatty liver disease (NAFLD) affecting human populations that consume a western diet. Although it is recognized that intoxication by chemical pollutants can lead to NAFLD, there is limited information available regarding the mechanism by which typical environmental levels of exposure can contribute to the onset of this disease. Here, we describe the alterations in gene expression profiles and metabolite levels in the human HepaRG liver cell line, a validated model for cellular steatosis, exposed to the polychlorinated biphenyl (PCB) 126, one of the most potent chemical pollutants that can induce NAFLD. Sparse partial least squares classification of the molecular profiles revealed that exposure to PCB 126 provoked a decrease in polyunsaturated fatty acids as well as an increase in sphingolipid levels, concomitant with a decrease in the activity of genes involved in lipid metabolism. This was associated with an increased oxidative stress reflected by marked disturbances in taurine metabolism. A gene ontology analysis showed hallmarks of an activation of the AhR receptor by dioxin-like compounds. These changes in metabolome and transcriptome profiles were observed even at the lowest concentration (100 pM) of PCB 126 tested. A decrease in docosatrienoate levels was the most sensitive biomarker. Overall, our integrated multi-omics analysis provides mechanistic insight into how this class of chemical pollutant can cause NAFLD. Our study lays the foundation for the development of molecular signatures of toxic effects of chemicals causing fatty liver diseases to move away from a chemical risk assessment based on in vivo animal experiments

    A comparison of intrauterine haemopoietic cell transplantation and lentiviral gene transfer for the correction of severe β-thalassaemia in a HbbTh3/+ murine model

    Get PDF
    Major haemoglobinopathies place tremendous strain on global resources. Intrauterine haemopoietic cell (IUHCT) and gene (IUGT) therapies can potentially reduce perinatal morbidities with greater efficacy than postnatal therapy alone. We performed both procedures in the thalassaemic HbbTh3/+ murine model. Intraperitoneal delivery of coisogenic cells at E13-14 produced dose-dependent chimerism. High-dose adult bone marrow (BM) cells maintained 0.2-3.1% chimerism over ~24 weeks and treated heterozygotes demonstrated higher chimerism than wild-type pups (1.6 vs. 0.7%). Fetal liver cells produced higher chimerism compared to adult BM when transplanted at the same doses, maintaining 1.8-2.4% chimerism over ~32 weeks. We boosted transplanted mice postnatally with adult BM cells following busulfan conditioning. Engraftment was maintained at >1% only in recipients which were chimeric prior to boosting. IUHCT-treated non-chimeras and non-IUHCT mice showed micro- or no chimerism. Additional fludarabine treatment produced higher chimerism than busulfan alone. Engraftment was more effective following higher starting chimerism prior to boosting and in heterozygotes. Chimeric heterozygotes expressed 2.2-15.1% donor cells with eventual decline at 24 weeks (vs. <1% in non-chimeras) and demonstrated improved haematological indices and smaller spleens compared to untreated heterozygotes. Intravenous delivery of GLOBE lentiviral-vector expressing HBB (human β-globin) resulted in vector concentration of 0.001-0.6 copies/cell. Most haematological indices were higher in treated than untreated heterozygotes including haemoglobin and mean corpuscular volume, though still lower than in wild-types. Thus both direct IUGT and IUHCT strategies can be used to achieve haematological improvement but require further dose optimisation. IUHCT will be useful combined with postnatal transplantation to further enhance engraftment

    Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats.

    Get PDF
    Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants

    Identification of Genes with Rare Loss of Function Variants Associated with Aggressive Prostate Cancer and Survival.

    Get PDF
    BACKGROUND: Prostate cancer (PrCa) is a substantial cause of mortality among men globally. Rare germline mutations in BRCA2 have been validated robustly as increasing risk of aggressive forms with a poorer prognosis; however, evidence remains less definitive for other genes. OBJECTIVE: To detect genes associated with PrCa aggressiveness, through a pooled analysis of rare variant sequencing data from six previously reported studies in the UK Genetic Prostate Cancer Study (UKGPCS). DESIGN, SETTING, AND PARTICIPANTS: We accumulated a cohort of 6805 PrCa cases, in which a set of ten candidate genes had been sequenced in all samples. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We examined the association between rare putative loss of function (pLOF) variants in each gene and aggressive classification (defined as any of death from PrCa, metastatic disease, stage T4, or both stage T3 and Gleason score ≥8). Secondary analyses examined staging phenotypes individually. Cox proportional hazards modelling and Kaplan-Meier survival analyses were used to further examine the relationship between mutation status and survival. RESULTS AND LIMITATIONS: We observed associations between PrCa aggressiveness and pLOF mutations in ATM, BRCA2, MSH2, and NBN (odds ratio = 2.67-18.9). These four genes and MLH1 were additionally associated with one or more secondary analysis phenotype. Carriers of germline mutations in these genes experienced shorter PrCa-specific survival (hazard ratio = 2.15, 95% confidence interval 1.79-2.59, p = 4 × 10-16) than noncarriers. CONCLUSIONS: This study provides further support that rare pLOF variants in specific genes are likely to increase aggressive PrCa risk and may help define the panel of informative genes for screening and treatment considerations. PATIENT SUMMARY: By combining data from several previous studies, we have been able to enhance knowledge regarding genes in which inherited mutations would be expected to increase the risk of more aggressive PrCa. This may, in the future, aid in the identification of men at an elevated risk of dying from PrCa

    CanRisk-Prostate: A Comprehensive, Externally Validated Risk Model for the Prediction of Future Prostate Cancer.

    Get PDF
    PURPOSE: Prostate cancer (PCa) is highly heritable. No validated PCa risk model currently exists. We therefore sought to develop a genetic risk model that can provide personalized predicted PCa risks on the basis of known moderate- to high-risk pathogenic variants, low-risk common genetic variants, and explicit cancer family history, and to externally validate the model in an independent prospective cohort. MATERIALS AND METHODS: We developed a risk model using a kin-cohort comprising individuals from 16,633 PCa families ascertained in the United Kingdom from 1993 to 2017 from the UK Genetic Prostate Cancer Study, and complex segregation analysis adjusting for ascertainment. The model was externally validated in 170,850 unaffected men (7,624 incident PCas) recruited from 2006 to 2010 to the independent UK Biobank prospective cohort study. RESULTS: The most parsimonious model included the effects of pathogenic variants in BRCA2, HOXB13, and BRCA1, and a polygenic score on the basis of 268 common low-risk variants. Residual familial risk was modeled by a hypothetical recessively inherited variant and a polygenic component whose standard deviation decreased log-linearly with age. The model predicted familial risks that were consistent with those reported in previous observational studies. In the validation cohort, the model discriminated well between unaffected men and men with incident PCas within 5 years (C-index, 0.790; 95% CI, 0.783 to 0.797) and 10 years (C-index, 0.772; 95% CI, 0.768 to 0.777). The 50% of men with highest predicted risks captured 86.3% of PCa cases within 10 years. CONCLUSION: To our knowledge, this is the first validated risk model offering personalized PCa risks. The model will assist in counseling men concerned about their risk and can facilitate future risk-stratified population screening approaches
    corecore