88 research outputs found

    Influence of battery aging on energy management strategy

    Get PDF
    In the context of Hybrid Electric Propulsion Systems, one of the main aspects to investigate is the most suitable energy management strategy, which would allow the objectives of fuel consumption minimization and electric backup availability to be attained. The present study aims to compare two different energy management strategies for a Hybrid Electric Propulsion System (HEPS) for a Air-Taxi vehicle: though both are based on the same set fuzzy rules, the first one has been implemented neglecting battery aging effects, while the second adjusts the optimal battery discharge according to its age. The impact of such adaptation on fuel consumption and battery State of Charge will be evaluated along a typical mission profile

    Correlation of Dry Deposition Velocity and Friction Velocity over Different Surfaces for PM2.5 and Particle Number Concentrations

    Get PDF
    Dry deposition of particles is an important way of aerosol removal from the atmosphere and a key process in surface-atmosphere exchanges. The deposition velocities, Vd, are often parameterised in air quality and climate modelling as function of the friction velocity, u*, atmospheric stability, and particle size (if size-segregated information is available). In this work, a study of the correlation between Vd and u* over different surfaces is presented for both PM2.5 and particle number fluxes. Results indicate an almost linear increase of Vd with u* with slopes similar for PM2.5 fluxes and particle number fluxes over the different surfaces analysed. This means that the ratios Vd/u* tend to collapse over similar values even if Vd and u* are significantly different because u* take into account most of the surface effects. There is a limited difference between stable cases and unstable/neutral cases with slightly lower deposition velocities in stable cases for fixed values of u*. The average value of Vd/u* is 0.010 ± 0.0017 (median 0.0062 ± 0.0015) (considering all stabilities) and 0.0097 ± 0.002 (median 0.005 ± 0.001) for stable cases. This could be the base for an empirical parameterisation of deposition velocities in air quality models

    A Scalable Model for Design and Control of Turboprop Engines for Advanced Propulsion Systems

    Get PDF
    In this study, a methodology is proposed for designing turboprop engines and evaluating their off-design performance. It involves optimization steps for the choice of some of the system design parameters and adaptive scaling methods for the turbomachinery and propeller maps. Results show that it leads to a good estimation of the performance of the real architecture of the existing aircraft and is suitable to be used for innovative application such as the sizing of the engine for advanced propulsion systems like the hybrid-electric architectures with increasing hybridization factor

    Analysis of NO2 and O3 Total Columns from DOAS Zenith-Sky Measurements in South Italy

    Get PDF
    The Gas Absorption Spectrometer Correlating Optical Difference—New Generation 4 (GASCOD/NG4) is a multi-axis differential optical absorption spectroscopy (MAX-DOAS) instrument which measures diffuse solar spectra at the Environmental-Climate Observatory (ECO) of the Italian research institute CNR-ISAC, near Lecce. The high-resolution spectra measured in zenith-sky configuration were used to retrieve the NO2 and O3 vertical column densities (VCDs) from March 2017 to November 2019. These good-quality data, proven by the comparison with the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements, were used to characterize the ECO site by exploiting the sinergy with in situ NO2 and O3 concentrations and meteorological data. Although stratospheric processes seem to be the main forces behind the NO2 and O3 VCDs seasonal trends, diurnal variabilities revealed the presence of a tropospheric signal in the NO2 VCDs, which had significant lower values during Sundays. Comparison with wind data acquired at the ECO observatory, at 20 m above the ground, revealed how NO2 VCDs are influenced by both tropospheric local production and transport from the nearby city of Lecce. On the other hand, no significant tropospheric signal was contained in the O3 VCDs

    Numerical investigation of the performance of Contra-Rotating Propellers for a Remotely Piloted Aerial Vehicle

    Get PDF
    Abstract The present work aims at the numerical prediction of the performance of a Contra-Rotating Propellers (CRP) system for a Remotely Piloted Aerial Vehicles (RPAV). The CRP system was compared with an equivalent counter-rotating propellers configuration which was set by considering two eccentric propellers which were rotating at the same speed. Each contra-rotating test case was built by varying the pitch angle of blades of the rear propeller, while the front propeller preserved the original reconstructed geometry. Several pitch configurations and angular velocities of the rear propeller was simulated. Comparisons showed an improvement of the propulsive efficiency of the contra-rotating configuration in case of larger pitch angles combined with slower angular velocities of the rear propeller

    Control Oriented Modelling of a Turboshaft Engine for Hybrid Electric Urban Air-Mobility

    Get PDF
    none4The electrification of aircraft is a well-established trend in recent years in order to achieve economic and environmental sustainability. In this framework, an application particularly interesting for hybrid electric power system is represented by urban air-mobility. For this application, the authors presented a parallel hybrid electric power system including a turboshaft engine and two electric motors and proposed a quasi-stationary simulation tool. As a further step, this paper deals with the dynamic modelling of the same turboshaft engine within the framework of a hybrid electric system where the pilot command is interpreted as a power request to be satisfied by the engine and the electric machine according to the selected energy management strategy. In this work, the dynamic behaviour of the turboshaft engine is analysed with and without the help of the electric motors to satisfy the power demand.openTeresa Donateo, Ludovico Cucciniello, Luciano Strafella, Antonio FicarellaDonateo, Teresa; Cucciniello, Ludovico; Strafella, Luciano; Ficarella, Antoni

    On the Calculation of Urban Morphological Parameters Using GIS. An Application to Italian Cities

    Get PDF
    The identification of parameters that can quantitatively describe the different characteristics of urban morphology is fundamental to studying urban ventilation and microclimate at the local level and developing parameterizations of the dynamic effect of an urban area in mesoscale models. This paper proposes a methodology to calculate four morphological parameters, namely mean height, aspect ratio, sky view factor, and plan area ratio, of five cities located in southern (Bari and Lecce), central (Naples and Rome), and northern (Milan) Italy. The calculation is performed using the Geographical Information System (GIS), starting from morphological and land use data collected and analyzed in shapefiles. The proposed methodology, which can be replicated in other cities, also presents in detail the procedure followed to properly build input data to calculate the sky view factor using the UMEP GIS tool. The results show a gradual increase in the plan area index, λp, and mean building height, (Formula presented.), moving from the south to the north of Italy. Maximum values of λp and (Formula presented.) are obtained in the regions of Milan, Rome, and Naples, where the highest spatially-averaged values are also found, i.e., λp = 0.22, (Formula presented.) = 10.9 m in Milan; λp = 0.19, (Formula presented.) = 12.7 m in Rome; λp = 0.20, (Formula presented.) = 12 m in Naples. Furthermore, for all the cities investigated, areas characterized by the Corine Land Cover class as “continuous urban fabric” are those with medium sky view factor SVF values (around 0.6–0.7) and λp values (around 0.3) typical of intermediate/compact cities. The methodology employed here for calculating morphological parameters using GIS proves to be replicable in different urban contexts. This opens to a better classification of cities in local climate zones (LCZ), as shown for the Lecce region, useful for urban heat island (UHI) studies and to the development of parameterizations of the urban effects in global and regional climate models

    Five Years of Dust Episodes at the Southern Italy GAW Regional Coastal Mediterranean Observatory: Multisensors and Modeling Analysis

    Get PDF
    The Mediterranean area is a climate-change hotspot because of the natural and anthropogenic pollution pressure. The presence of natural aerosols, such as dust, influences solar radiation and contributes to the detection, in storm episodes, of significant concentrations of PM10 in Southern Italy, where generally fresh and clean air is due to local circulation, and particulate matter concentrations are very low. We present the results of medium-term observations (2015–2019) at Lamezia Terme GAW (Global Atmospheric Watch) Regional Observatory, with the purpose of identifying the dust incursion events by studying the aerosol properties in the site. To achieve this goal, the experimental data, collected by several instruments, have been also correlated with the large-scale atmospheric patterns derived by the ERA5 reanalysis dataset, in order to study the meteorological conditions that strongly influence dust outbreaks and their spatio-temporal behavior. An intense dust-outbreak episode, which occurred on 23–27 April 2019, was chosen as a case study; a detailed analysis was carried out considering surface and column optical properties, chemical properties, large-scale pattern circulation, air-quality modeling/satellite products, and back-trajectory analysis, to confirm the capability of the modeled large-scale atmospheric fields to correctly simulate the conditions mainly related to the desert dust-outbreak events

    Automated observation of physical snowpack properties in Ny-Ålesund

    Get PDF
    The snow season in the Svalbard archipelago generally lasts 6–10 months a year and significantly impacts the regional climate, glaciers mass balance, permafrost thermal regime and ecology. Due to the lack of long-term continuous snowpack physical data, it is still challenging for the numerical snow physics models to simulate multi-layer snowpack evolution, especially for remote Arctic areas. To fill this gap, in November 2020, an automated nivometric station (ANS) was installed ∼1 km Southwest from the settlement of Ny-Ålesund (Spitzbergen, Svalbard), in a flat area over the lowland tundra. It automatically provides continuous snow data, including NIR images of the fractional snow-cover area (fSCA), snow depth (SD), internal snow temperature and liquid water content (LWC) profiles at different depths with a 10 min time resolution. Here we present the first-year record of automatic snow preliminary measurements collected between November 2020 and July 2021 together with weekly manual observations for comparison. The snow season at the ANS site lasted for 225 days with an annual net accumulation of 117 cm (392 mm of water equivalent). The LWC in the snowpack was generally low (<4%) during wintertime, nevertheless, we observed three snow-melting events between November and February 2021 and one in June 2021, connected with positive temperature and rain on snow events (ROS). In view of the foreseen future developments, the ANS is the first automated, comprehensive snowpack monitoring system in Ny-Ålesund measuring key essential climate variables needed to understand the seasonal evolution of the snow cover on land

    Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air

    Get PDF
    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals
    corecore