70 research outputs found

    Plasmon-enhanced circular dichroism spectroscopy of chiral drug solutions

    Full text link
    We investigate the potential of surface plasmon polaritons at noble metal interfaces for surface-enhanced chiroptical sensing of dilute chiral drug solutions with nano-litre volume. The high quality factor of surface plasmon resonances in both Otto and Kretschmann configurations enables the enhancement of circular dichroism thanks to the large near-field intensity of such plasmonic excitations. Furthermore, the subwavelength confinement of surface plasmon polaritons is key to attain chiroptical sensitivity to small amounts of drug volumes placed around ≃\simeq 100 nm by the metal surface. Our calculations focus on reparixin, a pharmaceutical molecule currently used in clinical studies for patients with community-acquired pneumonia, including COVID-19 and acute respiratory distress syndrome. Considering realistic dilute solutions of reparixin dissolved in water with concentration ≀\leq 5 mg/ml and nl volume, we find a circular-dichroism differential absorption enhancement factor of the order ≃\simeq 20 and chirality-induced polarization distortion upon surface plasmon polariton excitation. Our results are relevant for the development of innovative chiroptical sensors capable of measuring the enantiomeric imbalance of chiral drug solutions with nl volume

    Identification by Virtual Screening and In Vitro Testing of Human DOPA Decarboxylase Inhibitors

    Get PDF
    Dopa decarboxylase (DDC), a pyridoxal 5â€Č-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the “in vitro” activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with Ki values ≄10 ”M. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with Ki values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a Ki value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery

    AIRO Breast Cancer Group Best Clinical Practice 2022 Update

    Get PDF
    Introduction: Breast cancer is the most common tumor in women and represents the leading cause of cancer death. Radiation therapy plays a key-role in the treatment of all breast cancer stages. Therefore, the adoption of evidence-based treatments is warranted, to ensure equity of access and standardization of care in clinical practice.Method: This national document on the highest evidence-based available data was developed and endorsed by the Italian Association of Radiation and Clinical Oncology (AIRO) Breast Cancer Group.We analyzed literature data regarding breast radiation therapy, using the SIGN (Scottish Intercollegiate Guidelines Network) methodology (www.sign.ac.uk). Updated findings from the literature were examined, including the highest levels of evidence (meta-analyses, randomized trials, and international guidelines) with a significant impact on clinical practice. The document deals with the role of radiation therapy in the treatment of primary breast cancer, local relapse, and metastatic disease, with focus on diagnosis, staging, local and systemic therapies, and follow up. Information is given on indications, techniques, total doses, and fractionations.Results: An extensive literature review from 2013 to 2021 was performed. The work was organized according to a general index of different topics and most chapters included individual questions and, when possible, synoptic and summary tables. Indications for radiation therapy in breast cancer were examined and integrated with other oncological treatments. A total of 50 questions were analyzed and answered.Four large areas of interest were investigated: (1) general strategy (multidisciplinary approach, contraindications, preliminary assessments, staging and management of patients with electronic devices); (2) systemic therapy (primary, adjuvant, in metastatic setting); (3) clinical aspects (invasive, non-invasive and micro-invasive carcinoma; particular situations such as young and elderly patients, breast cancer in males and cancer during pregnancy; follow up with possible acute and late toxicities; loco-regional relapse and metastatic disease); (4) technical aspects (radiation after conservative surgery or mastectomy, indications for boost, lymph node radiotherapy and partial breast irradiation).Appendixes about tumor bed boost and breast and lymph nodes contouring were implemented, including a dedicated web application. The scientific work was reviewed and validated by an expert group of breast cancer key-opinion leaders.Conclusions: Optimal breast cancer management requires a multidisciplinary approach sharing therapeutic strategies with the other involved specialists and the patient, within a coordinated and dedicated clinical path. In recent years, the high-level quality radiation therapy has shown a significant impact on local control and survival of breast cancer patients. Therefore, it is necessary to offer and guarantee accurate treatments according to the best standards of evidence-based medicine

    A Medium Voltage Cables Model for Power Line Communication

    No full text
    The aim of this paper is the development of a theoretical model of medium-voltage (MV) cables in the frequency range of 25-200 kHz, which can be easily implemented in the Simulink environment. Two transmission-line configurations: 1) line-ground and 2) line-line were considered. The model requires the knowledge of the transmission channel parameters in the frequency domain. Thus, a characterization of MV cables in the two transmission-line configurations by means of experimental measurements was performed on commonly used MV cables, RG7H1R, of different sections, 95 mm2 and 185 mm2 with an aluminum core and copper shielded. To validate the model, a comparison between the attenuation constant alpha measured and the one simulated for both configurations under study was carried out

    Power Line Communication in Medium Voltage Systems: Characterization of MV Cables

    No full text
    The aim of this paper is to illustrate the development of a theoretical and experimental study on the characterization of medium voltage (MV) cables in the frequency range 25-200 kHz. Two transmission line configurations, line-ground and line-line, were considered in order to evaluate the main parameters, such as the characteristic impedance and the attenuation constant . A simplified model of the line-ground configuration is proposed which allows one to evaluate the characteristic impedance and the attenuation constant by means of geometrical dimensions. The model was verified by experimental measurements on commonly used MV cables, RG7H1R, with an aluminium core of different sections, 95 mm2 and 185 mm2. Moreover, the experimental tests were carried out for the line-line configuration

    Biomarkers in Anderson–Fabry Disease

    No full text
    Fabry disease is a rare lysosomal storage disorder caused by a deficiency of α-galactosidase A, resulting in multisystemic involvement. Lyso-Gb3 (globotriaosylsphingosine), the deacylated form of Gb3, is currently measured in plasma as a biomarker of classic Fabry disease. Intensive research of biomarkers has been conducted over the years, in order to detect novel markers that may potentially be used in clinical practice as a screening tool, in the context of the diagnostic process and as an indicator of response to treatment. An interesting field of application of such biomarkers is the management of female heterozygotes who present difficulty in predictable clinical progression. This review aims to summarise the current evidence and knowledge about general and specific markers that are actually measured in subjects with confirmed or suspected Fabry disease; moreover, we report potential novel markers such as microRNAs. Recent proteomic or metabolomic studies are in progress bringing out plasma proteome profiles in Fabry patients: this assessment may be useful to characterize molecular pathology of the disease, to improve diagnostic process, and to monitor response to treatment. The management of Fabry disease may be improved by the identification of biomarkers that reflect clinical course, severity, and the progression of the disease
    • 

    corecore