14 research outputs found

    R-trees: A Dynamic Index Structure for Spatial Searching

    No full text
    In order to handle spatial data efficiently, as required in computer aided design and geo-data applications, a database system needs an index mechanism that will help it retrieve data items quickly according to their spatial locations However, traditional indexing methods are not well suited to data objects of non-zero size located m multi-dimensional spaces In this paper we describe a dynamic index structure called an R-tree which meets this need, and give algorithms for searching and updating it. We present the results of a series of tests which indicate that the structure performs well, and conclude that it is useful for current database systems in spatial applications

    An Extended R-Tree Indexing Method Using Selective Prefetching in Main Memory

    No full text

    Mobile Computing, IoT and Big Data for Urban Informatics: Challenges and Opportunities

    No full text
    Over the past few decades, the population in the urban areas has been increasing in a dramatic manner. Currently, about 80% of the U.S. population and about 50% of the world’s population live in urban areas and the population growth rate for urban areas is estimated to be over one million people per week. By 2050, it has been predicted that 64% of people in the developing nations and 85% of people in the developed world would be living in urban areas [1, 2]. Such a dramatic population growth in urban areas has been placing demands on urban infrastructure like never before
    corecore