318 research outputs found

    Viral Suppressors of RNA Silencing Hinder Exogenous and Endogenous Small RNA Pathways in Drosophila

    Get PDF
    In plants and insects, RNA interference (RNAi) is the main responder against viruses and shapes the basis of antiviral immunity. Viruses counter this defense by expressing viral suppressors of RNAi (VSRs). While VSRs in Drosophila melanogaster were shown to inhibit RNAi through different modes of action, whether they act on other silencing pathways remained unexplored.Here we show that expression of various plant and insect VSRs in transgenic flies does not perturb the Drosophila microRNA (miRNA) pathway; but in contrast, inhibits antiviral RNAi and the RNA silencing response triggered by inverted repeat transcripts, and injection of dsRNA or siRNA. Strikingly, these VSRs also suppressed transposon silencing by endogenous siRNAs (endo-siRNAs).Our findings identify VSRs as tools to unravel small RNA pathways in insects and suggest a cosuppression of antiviral RNAi and endo-siRNA silencing by viruses during fly infections

    Dynamic Expression of Broad-Complex Isoforms Mediates Temporal Control of an Ecdysteroid Target Gene at the Onset of Drosophila Metamorphosis

    Get PDF
    AbstractMetamorphosis in Drosophila melanogaster is orchestrated by the steroid hormone ecdysone, which triggers a cascade of primary-response transcriptional regulators and secondary effector genes during the third larval instar and prepupal periods of development. The early ecdysone-response Broad-Complex (BR-C) gene, a key regulator of this cascade, is defined by three complementing functions (rbp, br, and 2Bc) and encodes several distinct zinc-finger-containing isoforms (Z1 to Z4). Using isoform-specific polyclonal antibodies we observe in the fat body a switch in BR-C isoform expression from the Z2 to the other three isoforms during the third instar. We show that the 2Bc+ function that corresponds presumably to the Z3 isoform is required for the larval fat body-specific expression of a transgenic construct (AE) in which the lacZ gene is under the control of the ecdysone-regulated enhancer and minimal promoter of the fat body protein 1 (Fbp1) gene. Using hs(BR-C) transgenes, we demonstrate that overexpression of Z1, Z3, or Z4, but not Z2, is able to rescue AE activity with faithful tissue specificity in a BR-C null (npr1) genetic context, demonstrating a partial functional redundancy between Z1, Z3, and Z4 isoforms. We also show that continuous overexpression of Z2 during the third instar represses AE, while conversely, expression of Z3 earlier than its normal onset induces precocious expression of the construct. This finding establishes a tight correlation between the dynamic pattern of expression of the BR-C isoforms and their individual repressive or inductive roles in AE regulation. Altogether our results demonstrate that the balance between BR-C protein isoforms in the fat body mediates, in part, the precise timing of the ecdysone activation of the AE construct but does not modulate its tissue specificity

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    elPrep: high-performance preparation of sequence alignment/map files for variant calling

    Get PDF
    elPrep is a high-performance tool for preparing sequence alignment/map files for variant calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and so on, while producing identical results. What sets elPrep apart is its software architecture that allows executing preparation pipelines by making only a single pass through the data, no matter how many preparation steps are used in the pipeline. elPrep is designed as a multithreaded application that runs entirely in memory, avoids repeated file I/O, and merges the computation of several preparation steps to significantly speed up the execution time. For example, for a preparation pipeline of five steps on a whole-exome BAM file (NA12878), we reduce the execution time from about 1: 40 hours, when using a combination of SAMtools and Picard, to about 15 minutes when using elPrep, while utilising the same server resources, here 48 threads and 23GB of RAM. For the same pipeline on whole-genome data (NA12878), elPrep reduces the runtime from 24 hours to less than 5 hours. As a typical clinical study may contain sequencing data for hundreds of patients, elPrep can remove several hundreds of hours of computing time, and thus substantially reduce analysis time and cost

    GC content shapes mRNA storage and decay in human cells.

    Get PDF
    mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5' decay applies to optimally translated GC-rich mRNAs

    Transcriptional responses of ecologically diverse drosophila species to larval diets differing in relative sugar and protein ratios

    Get PDF
    We utilized three ecologically diverse Drosophila species to explore the influence of ecological adaptation on transcriptomic responses to isocaloric diets differing in their relative proportions of protein to sugar. Drosophila melanogaster, a cosmopolitan species that breeds in decaying fruit, exemplifies individuals long exposed to a Western diet higher in sugar, while the natural diet of the cactophilic D. mojavensis, is much lower in carbohydrates. Drosophila arizonae, the sister species of D. mojavensis, is largely cactophilic, but also utilizes rotting fruits that are higher in sugars than cacti. We exposed third instar larvae for 24 hours to diets either (1) high in protein relative to sugar, (2) diets with equal amounts of protein and sugar, and (3) diets low in protein but high in sugar. As we predicted, based upon earlier interspecific studies of development and metabolism, the most extreme differences in gene expression under different dietary conditions were found in D. mojavensis followed by D. arizonae. No differential expression among diets was observed for D. melanogaster, a species that survives well under all three conditions, with little impact on its metabolism. We suggest that these three species together provide a model to examine individual and population differences in vulnerability to lifestyle-associated health problems such as metabolic syndrome and diabetes

    The Participation of Calponin in the Cross Talk between 20-Hydroxyecdysone and Juvenile Hormone Signaling Pathways by Phosphorylation Variation

    Get PDF
    20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling pathways interact to mediate insect development, but the mechanism of this interaction is poorly understood. Here, a calponin homologue domain (Chd) containing protein (HaCal) is reported to play a key role in the cross talk between 20E and JH signaling by varying its phosphorylation. Chd is known as an actin binding domain present in many proteins including some signaling proteins. Using an epidermal cell line (HaEpi), HaCal was found to be up-regulated by either 20E or the JH analog methoprene (JHA). 20E induced rapid phosphorylation of HaCal whereas no phosphorylation occurred with JHA. HaCal could be quickly translocated into the nuclei through 20E or JH signaling but interacted with USP1 only under the mediation of JHA. Knockdown of HaCal by RNAi blocked the 20E inducibility of USP1, PKC and HR3, and also blocked the JHA inducibility of USP1, PKC and JHi. After gene silencing of HaCal by ingestion of dsHaCal expressed by Escherichia coli, the larval development was arrested and the gene expression of USP1, PKC, HR3 and JHi were blocked. These composite data suggest that HaCal plays roles in hormonal signaling by quickly transferring into nucleus to function as a phosphorylated form in the 20E pathway and as a non-phosphorylated form interacting with USP1 in the JH pathway to facilitate 20E or JH signaling cascade, in short, by switching its phosphorylation status to regulate insect development
    • 

    corecore