43 research outputs found

    Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HT

    Get PDF
    The development of novel hole transporting materials (HTMs) for perovskite solar cells (PSCs) that can enhance device's reproducibility is a largely pursued goal, even to the detriment of a very high efficiency, since it paves the way to an effective industrialization of this technology. In this work, we study the covalent functionalization of reduced graphene oxide (RGO) flakes with different organic functional groups with the aim of increasing the stability and homogeneity of their dispersion within a poly(3-hexylthiophene) (P3HT) HTM. The selected functional groups are indeed those recalling the two characteristic moieties present in P3HT, i.e., the thienyl and alkyl residues. After preparation and characterization of a number of functionalized RGO@P3HT blends, we test the two containing the highest percentage of dispersed RGO as HTMs in PSCs and compare their performance with that of pristine P3HT and of the standard Spiro-OMeTAD HTM. Results reveal the big influence of the morphology adopted by the single RGO flakes contained in the composite HTM in driving the final device performance and allow to distinguish one of these blends as a promising material for the fabrication of highly reproducible PSCs

    Effects of conditioned medium from human amniotic mesenchymal tissue cell cultures on prostate cancer cells

    Get PDF
    It has been recently demonstrated that human amniotic mesenchymal tissue cells (hAMTC) derived from term placenta inhibit lymphocyte proliferation and significantly reduce the growth of haemopoietic and non haemopoietic cancer cell lines (HeLa and Saos cells) in vitro (1). The aim of our study was to evaluate the effects of hAMTC-conditioned medium (CM) on two human prostate cancer cells lines: LNCaP, androgen responsive and well differentiated, and PC-3, androgen unresponsive and less differentiated. Cells were grown in their standard culture conditions in the absence or in the presence of various concentrations (0.001–50%) of hAMTC-CM or their own exhausted medium. Cell numbers were determined by using a haemocytometer, after three days. Moreover, E- and N-cadherin expression was evaluated in PC-3 cells cultured in medium with 0.01, 1 or 25% hAMTC-CM by Immunocytochemistry and Western blot analysis. Our findings indicate that hAMTC-CM reduces the growth of both PC-3 and LNCaP cells. The effect is more pronounced in PC-3 cells in which inhibition is about 25% vs control (p<0.001) at a very low concentration (0.001%) and reaches the maximum (about 55% vs control, p<0.001) with the highest concentration used (50%). In LNCaP cells only the highest concentration of hAMTC-CM (50%) inhibits cell proliferation (about 40% vs control, p<0.001). Interestingly, growth of LNCaP cells is reduced by their own exhausted medium, while proliferation of PC-3 cells is not affected by their spent medium. Both E- and N-cadherin expression have been detected at the membrane level in untreated PC-3 cells and the localization does not change in hAMTC-CM-treated cells. Preliminary data obtained by Western blot analysis seem to indicate an increase in both E- and N-cadherin levels. Our findings show that hAMTC-CM reduces prostate cancer cell proliferation in relationship to their androgen sensitivity and modifies the expression levels of adhesion molecules. Experiments are in progress to determine the mechanisms which underlie the observed effects and assess if hAMTC-CM can determine any variation in the differentiation status of prostate cancer cells

    Beta-amyloid-acetylcholine structural interaction: evidence for neuroprotective effects of acetylcholine in neural cells

    Get PDF
    Alzheimer’s disease (AD) is regarded as a multifactorial disease characterized by a complex pathogenesis including a cholinergic deficit - due to degeneration of cholinergic projections from the basal forebrain - and the extracellular accumulation of amyloid beta (Aβ) peptide. Aβ containing 39 to 42 amino acids is the predominant component of the senile plaques that, together with neurofibrillary tangles, are regarded as the neuropathological hallmarks of AD (Sorrentino et al. 2014). Aβ may assume different conformations changing from random coil or α-helical monomers to β-sheet structures forming toxic oligomers and/or β-sheet mature fibrils. In this framework, we studied the effect of acetylcholine (ACh) on the conformation of Aβ by circular dichroism analysis. Moreover we investigated the ability of ACh to protect neuronal cells from the toxic action of amyloid peptide and to modulate the neuroinflammatory response occurring via the phospholipase A2 (PLA2). Results show that the amount of Aβ(25-35) β-strand raised linearly in absence of ACh, whereas it remained almost constant in presence of ACh. In addition, in a micelle solution mimicking the membrane environment ACh was found effective in increasing and stabilizing the soluble and not toxic helical content of Aβ(25-35) suggesting that ACh is capable to preserve the soluble form of Aβ(25-35), reducing the incipit of Aβ aggregation. In order to assess the neuro-protective ability of ACh against toxic Aβ(25-35) accumulation, we used neural cell (NCC) cultures containing both astrocytes and glial cells prepared from brains embryos from timed pregnant Wistar rats and infused ACh for 48h. By immunostaining, we observed that ACh reduced Aβ(25-35)-induced cell death. Then, we tested the protective effect of ACh on inflammation induced by Aβ administration. NCC were challenged with Aβ(25-35) in the presence and absence of ACh and immunostained for astroglial and neuronal markers: results showed a reduction of the morphological features of astrogliosys in ACh treated cells. PLA2 expression analysis corroborated these data also underlying that ACh can negatively regulate inflammation pathways in glial cells

    Natural Walking. Nuovo comfort e tessili sperimentali nel Design degli accessori

    No full text
    Il presente saggio illustra l’approccio progettuale design driven che interseca i settori della ricerca e produttivi che appartengono ad ambiti di applicazione diversi, a prima vista divergenti. Difatti, il processo di creazione nel design scaturisce dalla definizione di scenari evolutivi strategici che integrano visioni future e conoscenze innovative da proporre in questo caso, nell’accompagnamento allo sviluppo per la crescita dei sistemi manifatturieri e agricolo-produttivi locali. Le strategie per lo sviluppo si fondano sulla ricerca e la sperimentazione e contribuiscono a creare un terreno comune di scambio, una sorta di intelligenza del sistema che consente di trasferire conoscenze da un ambito all’altro. Il caso studio presentato dimostra come questo sia possibile, e quali sono gli elementi che intervengono per guidare la dinamica inclusiva e consentire il dialogo tra ambiti di applicazione orientati all’innovazione attraverso il trasferimento di know how. La convergenza di intenti dà luogo alla dinamica della collaborazione che favorisce nuove applicazioni nei settori del tessile e della moda. L’approccio interdisciplinare design driven guida la ricerca applicata multisettoriale, gli ambiti coinvolti nel caso studio sono i seguenti: il textile design per sperimentare conoscenze innovative nel settore della Moda dell’accessorio scarpa; l’agrario-produttivo per la valorizzazione multisettoriale di tessili ottenuti da fibre vegetali, in questo caso la canapa; il behavior design, l’analisi comportamentale per assicurare il benessere fisico-motorio nella definizione dei criteri specifici e le conseguenti caratteristiche principali del progetto di design per l’accessorio scarpa.The present essay illustrates the design driven approach that crosses the research and production sectors that belong to different fields of application, at first sight divergent. In fact, the design creation process stems from the definition of strategic development scenarios that integrate future visions and innovative knowledge to be propose in this case, in the accompaniment to development for the growth of local manufacturing and agricultural production systems. The strategies for development are based on research and experimentation and contribute to creating a common ground of exchange, a sort of intelligence of the system that allows the transfer of knowledge from one area to!another.The presented case study demonstrates how this is possible, and what elements are involved in guiding the inclusive dynamic and allowing dialogue between innovation oriented areas of application through the transfer of know how. The convergence of intents give rise to the dynamics of collaboration that supports new applications in the sectors of textiles and fashion. The interdisciplinary design driven approach guides the applied multidsector research, the!areas involved in the case study are the following: textile design to experiment with innovative knowledge in the fashion industry of the shoe accessory; the agrarian productive for the multidsectoral valorisation of textiles obtained from vegetable fibers, in this case hemp; behavior design, behavioral analysis to!ensure physical and motor welldbeing in the definition of specific criteria and the consequent main characteristics of!the design project for the shoe accessory

    A brain connectivity metric based on phase linearity measurement

    No full text
    The analysis of brain connectivity is gaining interest in recent years due to the relevant information it carries about the functioning of the brain in health and in disease. In brief, it consists in measuring the statistical dependencies between signals generated by different brain regions. Several metrics have been proposed in literature, related to three families: amplitude based, phase based on jointly amplitude and phase based. Due to the large amount of noise that typically affects the estimation of the connectivity maps, averaging over several epochs of a population is normally carried out. We propose a novel phase based metric, namely the Phase Linearity Metric (PLM), that is resilient to noise and volume conduction, bearing promise to lower the number of epochs needed for a reliable measurement. The comparison with the widely adopted PLI connectivity metric confirms the effectiveness of the PLM

    Phase Linearity Measurement: a novel index for brain functional connectivity

    No full text
    The problem of describing how different brain areas interact between each other has been granted a great deal of attention in the last years. The idea that neuronal ensembles behave as oscillators and that they communicate through synchronization is now widely accepted. To this regard, EEG and MEG provide the signals that allow the estimation of such communication in vivo. Hence, phase-based metrics are essential. However, the application of phased-based metrics for measuring brain connectivity has proved problematic so far, since they appear to be less resilient to noise as compared to amplitude-based ones. In this paper, we address the problem of designing a purely phase-based brain connectivity metric, insensitive to volume conduction and resilient to noise. The proposed metric, named Phase Linearity Measurement (PLM), is based on the analysis of similar behaviors in the phases of the recorded signals. The PLM is tested in two simulated datasets as well as in real MEG data acquired at the Naples MEG center. Due to its intrinsic characteristics, the PLM shows considerable noise rejection properties as compared to other widely adopted connectivity metrics. We conclude that the PLM might be valuable in order to allow better estimation of phasebased brain connectivity
    corecore