24 research outputs found
First description of Eucoleus garfiai (Gallego and Mas-Coma, 1975) in wild boar (Sus scrofa) in Italy
Eucoleus garfiai (syn. Capillaria garfiai) is a nematode infecting lingual tissue of domestic and wild swine. Prevalence data for this parasite are scant and often related to accidental findings, occurring only in Japan and a few European countries. In this study, an epidemiological survey was performed in order to identify E. garfiai in wild boar from the Campania region, southern Italy. A total of 153 wild boar carcasses were inspected over the course of two hunting seasons (2019–2020). Histological examinations were performed on tongue samples fixed and stained with haematoxylin and eosin. The scraping of dorsal tongue tissue was carried out to collect adult worms for parasitological examination. Out of 153 wild boars, 40 (26.1%, 95% CI: 19.8–33.6%) tested positive for helminths and/or eggs in tongue tissues. Parasites were identified morphologically and identification was confirmed by molecular analysis of the 18S rRNA gene, showing a 99% nucleotide match with E. garfiai sequences available in literature. No statistically significant differences were found according to age, sex nor hunting province. Our findings agree with previous histopathological data confirming the low pathogenic impact of this nematode. The present study represents the first report of E. garfiai in wild boar from Italy
K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf
We report the discovery from K2 of a transiting terrestrial planet in an
ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in
only 4.3 hours, the second-shortest orbital period of any known planet, just 4
minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a
combination of archival images, AO imaging, RV measurements, and light curve
modelling, we show that no plausible eclipsing binary scenario can explain the
K2 light curve, and thus confirm the planetary nature of the system. The
planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which
must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463
+/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA
The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune
HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space
mission during its Campaign 8. It has been recently found to host two small
transiting planets, namely, HD3167b, an ultra short period (0.96 d)
super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit
(29.85 d). Here we present an intensive radial velocity follow-up of HD3167
performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We
revise the system parameters and determine radii, masses, and densities of the
two transiting planets by combining the K2 photometry with our spectroscopic
data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and
mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of
ultra-short period planets known to have a rocky terrestrial composition.
HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of
2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53)
g/cm^3, indicative of a planet with a composition comprising a solid core
surrounded by a thick atmospheric envelope. The rather large pressure scale
height (about 350 km) and the brightness of the host star make HD3167c an ideal
target for atmospheric characterization via transmission spectroscopy across a
broad range of wavelengths. We found evidence of additional signals in the
radial velocity measurements but the currently available data set does not
allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table
Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune
We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 d. We model the activity-induced radial velocity variations of the host star with a multidimensional Gaussian Process framework and detect a planetary signal of 10.6 \ub1 3.0 m s−1, which matches the transit ephemeris, and translates to a planet mass of 21.8 \ub1 6.2 M. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04+−006661 g cm−3, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011–1012 g s−1 due to the high level of radiation it receives from its host star
K2-290: A warm Jupiter and a mini-Neptune in a triple-star system
We report the discovery of two transiting planets orbiting K2-290 (EPIC 249624646), a bright (V = 11.11) late F-type star residing in a triple-star system. It was observed during Campaign 15 of the K2 mission, and in order to confirm and characterize the system, follow-up spectroscopy and AO imaging were carried out using the FIES, HARPS, HARPS-N, and IRCS instruments. From AO imaging and Gaia data we identify two M-dwarf companions at a separation of 113 \ub1 2 and 2467+−177155 au. From radial velocities, K2 photometry, and stellar characterization of the host star, we find the inner planet to be a mini-Neptune with a radius of 3.06 \ub1 0.16 R and an orbital period of P = 9.2 d. The radius of the mini-Neptune suggests that the planet is located above the radius valley, and with an incident flux of F ∼ 400 F, it lies safely outside the super-Earth desert. The outer warm Jupiter has a mass of 0.774 \ub1 0.047 MJ and a radius of 1.006 \ub1 0.050 RJ, and orbits the host star every 48.4 d on an orbit with an eccentricity e < 0.241. Its mild eccentricity and mini-Neptune sibling suggest that the warm Jupiter originates from in situ formation or disc migration
Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune
We present a detailed analysis of HARPS-N radial velocity observations of
K2-100, a young and active star in the Praesepe cluster, which hosts a
transiting planet with a period of 1.7 days. We model the activity-induced
radial velocity variations of the host star with a multi-dimensional Gaussian
Process framework and detect a planetary signal of , which matches the transit ephemeris, and translates to a planet
mass of . We perform a suite of validation tests to
confirm that our detected signal is genuine. This is the first mass measurement
for a transiting planet in a young open cluster. The relatively low density of
the planet, , implies that K2-100b
retains a significant volatile envelope. We estimate that the planet is losing
its atmosphere at a rate of due to the high
level of radiation it receives from its host star.O.B. and S.Ai. acknowledge support from
the UK Science and Technology Facilities Council (STFC) under grants
ST/S000488/1 and ST/R004846/1. J.K., S.G. and A.P.H acknowledges support by Deutsche Forschungsgemeinschaft (DFG) grants PA525/18-1 and
PA525/19-1 and HPA 3279/12-1 within the DFG Schwerpunkt SPP 1992,
Exploring the Diversity of Extra-solar Planets. L.M. acknowledges support from PLATO ASI-INAF agreement n.2015-019-R.1-2018. S.Al. acknowledges the support from the Danish Council for Independent Research through the DFF Sapere Aude Starting Grant No. 4181-00487B, and
the Stellar Astrophysics Centre which funding is provided by The Danish National Research Foundation (Grant agreement no.: DNRF106). This
work is partly supported by JSPS KAKENHI Grant Numbers JP18H01265,
JP18H05439, 15H02063, and 18H05442 and JST PRESTO Grant Number
JPMJPR1775. M.C.V.F. and C.M.P. gratefully acknowledge the support of
the Swedish National Space Agency (DNR 174/18)
The Discovery and Mass Measurement of a New Ultra-Short-Period Planet: K2-131b
FWN – Publicaties zonder aanstelling Universiteit LeidenStars and planetary system
Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene–maleic acid copolymers
Styrene–maleic acid (SMA) copolymers are a promising alternative to detergents for the solubilization of membrane proteins. Here we employ Escherichia coli membranes containing KcsA as a model protein to investigate the influence of different environmental conditions on SMA solubilization efficiency. We show that SMA concentration, temperature, incubation time, ionic strength, presence of divalent cations and pH all influence the amount of protein that is extracted by SMA. The observed effects are consistent with observations from lipid-only model membrane systems, with the exception of the effect of pH. Increasing pH from 7 to 9 was found to result in an increase of the solubilization yield of E. coli membranes, whereas in lipid-only model systems it decreased over the same pH range, based on optical density (OD) measurements. Similar opposite pH-dependent effects were observed in OD experiments comparing solubilization of native yeast membranes and yeast lipid-only membranes. We propose a model in which pH-dependent electrostatic interactions affect binding of the polymers to extramembraneous parts of membrane proteins, which in turn affects the availability of polymer for membrane solubilization. This model is supported by the observations that a similar pH-dependence as for SMA is observed for the anionic detergent SDS, but not for the nonionic detergent DDM and that the pH-dependence can be largely overcome by increasing the SMA concentration. The results are useful as guidelines to derive optimal conditions for solubilization of biological membranes by SMA