6 research outputs found

    Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk

    Full text link
    Excitation of surface plasmon waves in extrinsic graphene is studied using a full-wave electromagnetic field solver as analysis engine. Particular emphasis is placed on the role played by spatial dispersion due to the finite size of the two-dimensional material at the micro-scale. A simple instructive set up is considered where the near field of a wire antenna is held at sub-micrometric distance from a disk-shaped graphene patch. The key-input of the simulation is the graphene conductivity tensor at terahertz frequencies, being modeled by the Boltzmann transport equation for the valence and conduction electrons at the Dirac points~(where a linear wave-vector dependence of the band energies is assumed). The conductivity equation is worked out in different levels of approximations, based on the relaxation time ansatz with an additional constraint for particle number conservation. Both drift and diffusion currents are shown to significantly contribute to the spatially dispersive anisotropic features of micro-scale graphene. More generally, spatial dispersion effects are predicted to influence not only plasmon propagation free of external sources, but also typical scanning probe microscopy configurations. The paper set the focus on plasmon excitation phenomena induced by near field probes, being a central issue for the design of optical devices and photonic circuits

    Magic distances for flat bands in twisted bilayer graphene

    Full text link
    Twisted bilayer graphene is known to host isolated and relatively flat bands near charge neutrality, when tuned to specific magic angles. Nonetheless, these rotational misalignments, lying below 1.1 degrees, result in long-period moir\'e crystals, whose anomalous electronic properties are hardly accessible to reliable atomistic simulations. Here, we present a map of differently stacked graphene sheets, at arbitrary rotation angles corresponding to precise interplanar distances, into an equivalence class represented by magic-angle twisted bilayer graphene. We determine the equivalence relation in the class within a continuum model, and extend its definition to a tight-binding approach. Then, we use density functional theory to suggest that the magic-angle physics may be characterized by costly computational strategies on a twisted bilayer geometry, with conveniently large stacking angles. Our results may pave the way for an ab initio characterization of the unconventional topological phases and related excitations, associated with currently observed low-energy quasi-flat bands

    Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

    Full text link
    Recent experimental evidence for and the theoretical confirmation of tunable edge plasmons and surface plasmons in graphene nanoribbons have opened up new opportunities to scrutinize the main geometric and conformation factors, which can be used to modulate these collective modes in the infrared-to-terahertz frequency band. Here, we show how the extrinsic plasmon structure of regular planar arrays of graphene nanoribbons, with perfectly symmetric edges, is influenced by the width, chirality and unit-cell length of each ribbon, as well as the in-plane vacuum distance between two contiguous ribbons. Our predictions, based on time-dependent density functional theory, in the random phase approximation, are expected to be of immediate help for measurements of plasmonic features in nanoscale architectures of nanoribbon devicesC.V.G. acknowledges the financial support of the “Secretaria Nacional de Educación Superior, Ciencia, Tecnología e Innovación” (SENESCYT-ECUADOR

    Orthogonality catastrophe and decoherence in a trapped-fermion environment

    Get PDF
    The Fermi-edge singularity and the Anderson orthogonality catastrophe describe the universal physics which occurs when a Fermi sea is locally quenched by the sudden switching of a scattering potential, leading to a brutal disturbance of its ground state. We demonstrate that the effect can be seen in the controllable domain of ultracold trapped gases by providing an analytic description of the out-of-equilibrium response to an atomic impurity, both at zero and at finite temperature. Furthermore, we link the transient behavior of the gas to the decoherence of the impurity, and to the degree of the non-Markovian nature of its dynamics

    Plasmon modes in extrinsic graphene: Ab initio simulations vs semi-classical models

    No full text
    Excitation and propagation of surface plasmons in intrinsic and extrinsic graphene are analyzed from the fundamental point of view, using time-dependent density functional theory in linear response regime. Density functional calculations, being set up from first principles, do include anisotropic effects in the unique electronic structure of graphene that cause remarkable consequences even on the THz band. The main signature of this anisotropy is the occurrence of two distinct plasmon modes over a frequency range of 1 to 300THz, where most photonic devices currently operate with large bandwidths and low losses. Further anisotropic features are inherent to the different electromagnetic response of graphene to positive and negative doping concentrations. The Dirac-cone approximation provides a simplified insight, assuming an isotropic graphene band structure near the Fermi level, which is found to be reliable at probing frequencies below ~20 THz and doping levels associated to Fermi energy shifts below/above ±0.3 eV. In these limits, a continuous integral expression derived from the Kubo formula represents an easy-to-use tool capable of catching the main essence of the process

    Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model

    No full text
    We present an analysis of the electronic and plasmonic behavior of periodic planar distributions of sufficiently wide graphene nanoribbons, for which a thorough ab initio investigation is practically unfeasible. Our approach is based on a semi-analytical model whose only free parameter is the charge carrier velocity, which we estimate by density-functional theory calculations on graphene. By this approach, we show that the plasmon resonance energies of the scrutinized systems fall in the lower THz band, relevant for optoelectronic and photonic applications. We further observe that these energies critically depend on the charge carrier concentration, ribbon width, electron relaxation rate, and in-plane transferred momentum angle, thus, suggesting a tunability of the associated light-matter modes
    corecore