57 research outputs found

    Spatially resolved PAH emission in the inner disks of Herbig Ae/Be stars

    Full text link
    We present adaptive optics high angular resolution (\sim0.1\arcsec) spectroscopic observations in the 3 \um region of eight well known Herbig Ae/Be stars with circumstellar disks. We detect the aromatic emission feature at 3.3 \um for four out of six of our objects with flared disks (HD 169142, HD 97048, HD 100453, HD 100546), some weaker additional features at 3.4 and 3.46 μ\mum and nanodiamond features at 3.43 and 3.53 \um in two of our flared object (HD 100546 and HD 97048 respectively). We also detect hydrogen recombination line at 3.74 \um in practically all objects. The emission in the polycyclic aromatic hydrocarbons (PAHs) feature at 3.3 \um, additional and nanodiamond features in the 3.4-3.5 \um region is, for the first time, spatially resolved in all the sources where the features are detected. The full-width at half-maximum sizes that we derive are typical of emission arising in a circumstellar disk. On the other hand, the continuum emission is unresolved, with the exception of HD 97048 where it is marginally resolved. We compare the observed spatial distribution of the 3.3 μ\mum PAH feature and the adjacent continuum to the predictions of a disk model that includes transiently heated small grains and PAHs in addition to large grains in thermal equilibrium \cite[]{habart2004a}. The model predicts that, as observed, the 3.3 μ\mum PAH emission feature is significantly broader than that of the adjacent continuum and that about 50% of its integrated intensity comes from a radius R<R< 30 AU. We find that the predicted brightness profiles reproduce very well the observed ones. This proves beyond doubt that the energetic 3.3 μ\mum PAH emission feature takes its origin in the inner disk regions.Comment: 7 figures, accepted to A&

    The Herschel view of circumstellar discs: a multi-wavelength study of Chamaeleon I

    Get PDF
    We present the results of a multi-wavelength study of circumstellar discs around 44 young stellar objects in the 3 Myr old nearby Chamaeleon I star-forming region. In particular, we explore the far-infrared/submm regime using Herschel fluxes. We show that Herschel fluxes at 160-500μ\,\mum can be used to derive robust estimates of the disc mass. The median disc mass is 0.005MM_{\odot} for a sample of 28 Class IIs and 0.006MM_{\odot} for 6 transition disks (TDs). The fraction of objects in Chamaeleon-I with at least the `minimum mass solar nebula' is 2-7%. This is consistent with previously published results for Taurus, IC348, ρ\rho Oph. Diagrams of spectral slopes show the effect of specific evolutionary processes in circumstellar discs. Class II objects show a wide scatter that can be explained by dust settling. We identify a continuous trend from Class II to TDs. Including Herschel fluxes in this type of analysis highlights the diversity of TDs. We find that TDs are not significantly different to Class II discs in terms of far-infrared luminosity, disc mass or degree of dust settling. This indicates that inner dust clearing occurs independently from other evolutionary processes in the discs.Comment: 16 pages, 13 figures. Accepted for publication in MNRA

    Time-Dependent Photodissociation Regions

    Get PDF
    We present theoretical models of the time-dependent thermal and chemical structure of molecular gas suddenly exposed to far-ultraviolet (FUV) (6 eV less than hv less than 13.6 eV) radiation fields and the consequent time- dependent infrared emission of the gas. We focus on the response of molecular hydrogen for cloud densities ranging from n = 10(exp 3) to 10(exp 6)/cu cm and FUV fluxes G(sub 0) = 10(exp 3)-10(exp 6) times the local FUV interstellar flux. For G(sub 0)/n greater than 10(exp -2) cu cm, the emergent H(sub 2) vibrational line intensities are initially larger than the final equilibrium values. The H(sub 2) lines are excited by FUV fluorescence and by collisional excitation in warm gas. Most of the H(sub 2) intensity is generated at a characteristic hydrogen column density of N approximately 10(exp 21)/sq cm, which corresponds to an FUV optical depth of unity caused by dust opacity. The time dependence of the H(sub 2) intensities arises because the initial abundances of H(sub 2) at these depths is much higher than the equilibrium values, so that H(sub 2) initially competes more effectively with dust in absorbing FUV photons. Considerable column densities of warm (T approximately 1000) K H(sub 2) gas can be produced by the FUV pumping of H(sub 2) vibrational levels followed by collisional de-excitation, which transfers the energy to heat. In dense (n greater than or approximately 10(exp 5)/cu cm) gas exposed to high (G(sub 0) greater than or approximately 10(exp 4)) fluxes, this warm gas produces a 2-1 S(1)/1-0 S(l) H(sub 2) line ratio of approximately 0.1, which mimics the ratio found in shocked gas. In lower density regions, the FUV pumping produces a pure-fluorescent ratio of approximately 0.5. We also present calculations of the time dependence of the atomic hydrogen column densities and of the intensities of 0 I 6300 A, S II 6730 A, Fe II 1.64 microns, and rotational OH and H20 emission. Potential applications include star-forming regions, clouds near active galactic nuclei, and planetary nebulae. We apply our models to five planetary nebulae and conclude that only BD +30deg3639 shows evidence of enhanced H(sub 2) emission due to (high) nonequilibrium H(sub 2) abundances

    Millimeter Imaging of MWC 758: Probing the Disk Structure and Kinematics

    Get PDF
    We investigate the structure and kinematics of the circumstellar disk around the Herbig Ae star MWC 758 using high-resolution observations of the ^(12)CO (3-2) and dust continuum emission at the wavelengths of 0.87 and 3.3 mm. We find that the dust emission peaks at an orbital radius of about 100 AU, while the CO intensity has a central peak coincident with the position of the star. The CO emission is in agreement with a disk in Keplerian rotation around a 2.0 M_⊙ star, confirming that MWC 758 is indeed an intermediate-mass star. By comparing the observation with theoretical disk models, we derive that the disk surface density Σ(r) steeply increases from 40 to 100 AU and decreases exponentially outward. Within 40 AU, the disk has to be optically thin in the continuum emission at millimeter wavelengths to explain the observed dust morphology, though our observations lack the angular resolution and sensitivity required to constrain the surface density on these spatial scales. The surface density distribution in MWC 758 disk is similar to that of "transition" disks, though no disk clearing has been previously inferred from the analysis of the spectral energy distribution (SED). Moreover, the asymmetries observed in the dust and CO emission suggest that the disk may be gravitationally perturbed by a low-mass companion orbiting within a radius of 30 AU. Our results emphasize that SEDs alone do not provide a complete picture of disk structure and that high-resolution millimeter-wave images are essential to reveal the structure of the cool disk mid-plane

    X-shooter spectroscopy of young stellar objects: I - Mass accretion rates of low-mass T Tauri stars in \sigma Orionis

    Full text link
    We present high-quality, medium resolution X-shooter/VLT spectra in the range 300-2500 nm for a sample of 12 very low-mass stars in the \sigma Orionis cluster. The sample includes stars with masses ranging from 0.08 to 0.3 M_\odot. The aim of this first paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass, young stars. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 109^{-9} M_{\odot} yr1^{-1} down to 5×1011\times10^{-11} M_{\odot} yr1^{-1}, allowing us to investigate the behavior of the accretion-driven emission lines in very-low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines, from the UV to the near-IR, obtained simultaneously. Most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We confirm the validity of the correlations between accretion luminosities and line luminosities given in the literature, with the possible exception of H\alpha. When looking at individual objects, we find that the Hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of accretion luminosities, often in better agreement than the uncertainties introduced by the adopted correlations. The average accretion luminosity derived from several Hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of non-simultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.Comment: 15 pages, 14 figure

    Flared Disks and Silicate Emission in Young Brown Dwarfs

    Full text link
    We present mid-infrared photometry of three very young brown dwarfs located in the ρ\rho Ophiuchi star-forming region -- GY5, GY11 and GY310 --obtained with the Subaru 8-meter telescope. All three sources were detected at 8.6 and 11.7μ\mum, confirming the presence of significant mid-infrared excess arising from optically thick dusty disks. The spectral energy distributions of both GY310 and GY11 exhibit strong evidence of flared disks; flat disks can be ruled out for these two brown dwarfs. The data for GY5 show large scatter, and are marginally consistent with both flared and flat configurations. Inner holes a few substellar radii in size are indicated in all three cases (and especially in GY11), in agreement with magnetospheric accretion models. Finally, our 9.7μ\mum flux for GY310 implies silicate emission from small grains on the disk surface (though the data do not completely preclude larger grains with no silicate feature). Our results demonstrate that disks around young substellar objects are analogous to those girdling classical T Tauri stars, and exhibit a similar range of disk geometries and dust properties.Comment: submitted to Astrophysical Journal Letter

    Dust Evolution in Protoplanetary Disks

    Full text link
    (abridged) In the core accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow from the submicron sizes typical of interstellar dust to micron size particles in the dense regions of molecular clouds and cores, the growth from micron size particles to pebbles and kilometre size bodies must occur in protoplanetary disks. This step in the formation of planetary systems is the last stage of solids evolution that can be observed directly in young extrasolar systems. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures are summarized. We discuss recent developments in the study of grain growth in molecular cloud cores and in collapsing envelopes of protostars as these provide the initial conditions for the dust in disks. We discuss the observational evidence for the growth of grains in young disks from mm surveys, as well as the recent evidence of radial variations of the dust properties in disks. We include a brief discussion of the constraints on the small end of the grain size distribution and on dust settling as derived from optical and IR observations. The observations are discussed in the context of global dust evolution models, in particular we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of grain sizes in disks. We also highlight the limits of current models, including the need to slow the radial drift of grains.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    The 2008-2009 outburst of the young binary system Z CMa unraveled by interferometry with high spectral resolution

    Get PDF
    Z CMa is a young binary system consisting of an Herbig primary and a FU Ori companion. Both components seem to be surrounded by active accretion disks and a jet was associated to the Herbig B0. In Nov. 2008, K. Grankin discovered that Z CMa was exhibiting an outburst with an amplitude larger than any photometric variations recorded in the last 25 years. To study the innermost regions in which the outburst occurs and understand its origin, we have observed both binary components with AMBER/VLTI across the Br{\gamma} emission line in Dec. 2009 in medium and high spectral resolution modes. Our observations show that the Herbig Be, responsible for the increase of luminosity, also produces a strong Br{\gamma} emission, and they allow us to disentangle from various origins by locating the emission at each velocities through the line. Considering a model of a Keplerian disk alone fails at reproducing the asymmetric spectro-astrometric measurements, suggesting a major contribution from an outflow.Comment: To be published in the proceedings of the SPIE'2010 conference on "Optical and Infrared Interferometry II
    corecore