193 research outputs found

    Local Granger causality

    Get PDF
    Granger causality (GC) is a statistical notion of causal influence based on prediction via linear vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the local Granger causality, i.e., the profile of the information transferred from the driver to the target process at each discrete time point; in this frame, GC is the average of its local version. We show that the variability of the local GC around its mean relates to the interplay between driver and innovation (autoregressive noise) processes, and it may reveal transient instances of information transfer not detectable from its average values. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear complex systems studied in the Gaussian approximation

    Assessment of Cardiorespiratory Interactions During Spontaneous and Controlled Breathing: Linear Parametric Analysis

    Get PDF
    In this work, we perform a linear parametric analysis of cardiorespiratory interactions in bivariate time series of heart period (HP) and respiration (RESP) measured in 19 healthy subjects during spontaneous breathing and controlled breathing at varying breathing frequency. The analysis is carried out computing measures of the total and causal interaction between HP and RESP variability in both time and frequency domains (low- and high-frequency, LF and HF). Results highlight strong cardiorespiratory interactions in the time domain and within the HF band that are not affected by the paced breathing condition. Interactions in the LF band are weaker and prevalent along the direction from HP to RESP, but result more influenced by the shift from spontaneous to controlled respiration

    Preliminary development of a questionnaire to measure the extra-pulmonary symptoms of severe asthma.

    Get PDF
    BACKGROUND: Research into the effects of asthma treatments on the extra-pulmonary symptoms of severe asthma is limited by the absence of a suitable questionnaire. The aim was to create a questionnaire suitable for intervention studies by selecting symptoms that are statistically associated with asthma pathology and therefore may improve when pathology is reduced. METHODS: Patients attending a specialist asthma clinic completed the 65-item General Symptom Questionnaire (GSQ-65), a questionnaire validated for assessing symptoms of people with multiple medically unexplained symptoms. Lung function (FEV1%) and cumulative oral corticosteroids (OCS) calculated from maintenance dose plus exacerbations were obtained from clinic records. Pathology was represented by the two components of a principal component analysis (PCA) of FEV1% and OCS. LASSO regression was used to select symptoms that had high coefficients with these two principal components and occurred frequently in severe asthma. RESULTS: 100 patients provided data. PCA revealed two components, one where FEV1% and OCS were inversely related and another where they were directly related. LASSO regression revealed 39 symptoms with non-zero coefficients on one or more of the two principal components from which 16 symptoms were selected for the GSQ-A on the basis of magnitude of coefficient and frequency. Asthma symptoms measured by asthma control questionnaires were excluded. The GSQ-A correlated 0.33 and - 0.34 (p = 0.001) with the two principal components. CONCLUSION: The GSQ-A assesses the frequency of 16 heterogenous non-respiratory symptoms that are associated with asthma severity using the statistical combination of FEV1% and OCS

    Quantifying High-Order Interactions in Cardiovascular and Cerebrovascular Networks

    Get PDF
    We present a method to analyze the dynamics of physiological networks beyond the framework of pairwise interactions. Our method defines the so-called O-information rate (OIR) as a measure of the higher-order interaction among several physiological variables. The OIR measure is computed from the vector autoregressive representation of multiple time series, and is applied to the network formed by heart period, systolic and diastolic arterial pressure, respiration and cerebral blood flow variability series measured in healthy subjects at rest and after head-up tilt. Our results document that cardiovascular, cerebrovascular and respiratory interactions are highly redundant, and that redundancy is enhanced by the entrainment of cardiovascular and cerebrovascular oscillations and by sympathetic activation

    Ground state solutions for non-autonomous dynamical systems

    Full text link
    We study the existence of periodic solutions for a second order non-autonomous dynamical system. We allow both sublinear and superlinear problems. We obtain ground state solutions

    Resolving the complexity of the human genome using single-molecule sequencing

    Get PDF
    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome - 78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology

    Semantic Object Prediction and Spatial Sound Super-Resolution with Binaural Sounds

    Full text link
    Humans can robustly recognize and localize objects by integrating visual and auditory cues. While machines are able to do the same now with images, less work has been done with sounds. This work develops an approach for dense semantic labelling of sound-making objects, purely based on binaural sounds. We propose a novel sensor setup and record a new audio-visual dataset of street scenes with eight professional binaural microphones and a 360 degree camera. The co-existence of visual and audio cues is leveraged for supervision transfer. In particular, we employ a cross-modal distillation framework that consists of a vision `teacher' method and a sound `student' method -- the student method is trained to generate the same results as the teacher method. This way, the auditory system can be trained without using human annotations. We also propose two auxiliary tasks namely, a) a novel task on Spatial Sound Super-resolution to increase the spatial resolution of sounds, and b) dense depth prediction of the scene. We then formulate the three tasks into one end-to-end trainable multi-tasking network aiming to boost the overall performance. Experimental results on the dataset show that 1) our method achieves promising results for semantic prediction and the two auxiliary tasks; and 2) the three tasks are mutually beneficial -- training them together achieves the best performance and 3) the number and orientations of microphones are both important. The data and code will be released to facilitate the research in this new direction.Comment: Project page: https://www.trace.ethz.ch/publications/2020/sound_perception/index.htm

    A High-Quality Bonobo Genome Refines The Analysis Of Hominid Evolution

    Get PDF
    The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation(1,2). Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes(1,3-5) and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome
    corecore