7 research outputs found

    Robust cryogenic matched low-pass coaxial filters for quantum computing applications

    Full text link
    Electromagnetic noise is one of the key external factors decreasing superconducting qubits coherence. Matched coaxial filters can prevent microwave and IR photons negative influence on superconducting quantum circuits. Here, we report on design and fabrication route of matched low-pass coaxial filters for noise-sensitive measurements at milliKelvin temperatures. A robust transmission coefficient with designed linear absorption (-1dB/GHz) and ultralow reflection losses less than -20 dB up to 20 GHz is achieved. We present a mathematical model for evaluating and predicting filters transmission parameters depending on their dimensions. It is experimentally approved on two filters prototypes different lengths with compound of Cu powder and Stycast commercial resin demonstrating excellent matching. The presented design and assembly route are universal for various compounds and provide high repeatability of geometrical and microwave characteristics. Finally, we demonstrate three filters with almost equal reflection and transmission characteristics in the range from 0 to 20 GHz, which is quite useful to control multiple channel superconducting quantum circuits.Comment: 5 pages, 4 figure

    Surface Plasmon Resonance Biosensor

    No full text
    Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F) in surface plasmon-polariton resonance (SPR) realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells) in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging) and loose solution (whole blood). In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96), thickness of the intermediate layer dm (300…400 nm) and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79). Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect

    Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance

    No full text
    Two metals are used in resonant layers for chemical sensors based on surface plasmon resonance (SPR) - gold and silver. Gold displays higher shift of the resonance angle to changes of ambient refraction index and is chemically stable. Silver posses narrower resonance curve thus providing a higher signal/noise ratio of SPR chemical sensors, but has a poor chemical stability. A new structure of resonant metallic film based on bimetallic silver/gold layers (gold as an outer layer) is suggested. It combines advantages of both gold and silver resonant layers. Bimetallic resonant films display so high shift of resonance angle on changes of ambient refraction index as gold films, but show narrower resonance curve, thus providing a higher signal / noise ratio. Additionally, the outer gold layer protects silver against oxidation

    Nanometer-thick SPR sensor for gaseous HCl

    No full text
    The optical properties of electrochemically polymerized N-methylaniline are changed in the presence of gaseous hydrogen chloride. This effect was used for preparation of chemical sensors with transduction based on surface plasmon resonance. The interaction of hydrogen chloride with a two nm layer of poly-(N-methylaniline) on gold leads to the shift of the surface plasmon resonance. The analysis of the resonance spectra demonstrates that the effect is caused by an increase of the imaginary component of the refractive index; a minor contribution is also provided by film condensation leading to an increase of the real component of the refractive index and a decrease in the thickness. The effect is selective and quasi-reversible. The concentration dependence of the gas effect obeys Langmuir's adsorption isotherm with a reciprocal value of the binding constant of 850 ± 160 ppm

    Experimental investigation of the coolant flow in the VVER reactor core with TVSA fuel assemblies

    Get PDF
    The paper presents the results of an experimental study to investigate the coolant interaction in adjoining fuel assemblies in the VVER reactor core composed of TVSA-T and upgraded TVSA FAs. The processes of the in-core coolant flow were simulated in a test wind tunnel. The experiments were conducted using models representing different portions of the VVER reactor core fuel bundle and consisted in measuring the radial and axial airflow velocities in representative areas within the FAs and in the interassembly space. The results of the experiments can be translated to the full-scale conditions of the coolant flow with the use of the fluid dynamics simulation theory. The measurements were performed using a five-channel pressure-tube probe. The coolant flow pattern in different portions of the fuel bundle is represented by distribution diagrams and distribution maps for the radial and axial velocity vector components in the representative areas of the models. An analysis for the spatial distribution of the radial and axial velocity vector components has made it possible to obtain a detailed pattern of the coolant flow about the FA spacer, mixing and combined spacer grids of different designs. The accumulated database for the coolant flow in FAs of different designs forms the basis for the engineering justification of the VVER reactor core reliability and serviceability. The investigation results for the coolant interaction in adjoining TVSA FAs of different designs have been adopted for the practical use at JSC Afrikantov OKBM to estimate the heat-engineering reliability of the VVER reactor cores and have been included in the database for verification of computational fluid dynamics (CFD) codes and detailed by-channel calculation codes
    corecore