77 research outputs found

    Future theranostic strategies: emerging ovarian cancer biomarkers to bridge the gap between diagnosis and treatment

    Get PDF
    Ovarian cancers are a complex and heterogenic group of malignancies that are difficult to detect, diagnose and treat. Fortunately, considerable knowledge of ovarian cancer specific biomarkers has been generated, that is pertinent to the development of novel theranostic platforms by combining therapies and diagnostics. Genomic and proteomic data has been invaluable in providing critical biomolecular targets for ovarian cancer theranostic approaches. Exploitation of the wealth of biomarker research that has been conducted offers viable targets as beacons for ovarian cancer detection, diagnosis, and therapeutic targeting. These markers can be used in theranostics, a treatment strategy that combines therapy and diagnostics and is common in nuclear medicine, where radionuclides are used for both diagnosis and treatment. The development of theranostics has taken substantial focus in recent years in the battle against ovarian cancer. Yet to date only one theranostic technology has emerged in clinical practice. However, given the wealth of ovarian cancer biomarkers the field is poised to see the emergence of revolutionary disease treatment and monitoring outcomes through their incorporation into the development of theranostic strategies. The future of ovarian cancer treatment is set to enable precise diagnosis, targeted treatment, and vigilant monitoring. This review aims to assess the status of ovarian cancer diagnostic tools and biomarkers in practice, clinical development, or pre-clinical development, highlighting newly emerging theranostic applications

    Bettering the devil you know: Can we drive predator adaptation to restore native fauna?

    Get PDF
    Predation of threatened fauna by native and introduced predators can drive extinction and prevent population recovery. Most predator management involves exclusion or culling. Evidence suggests that exclusion may have detrimental effects on a prey species' predator awareness. At the same time, culling can cause selection of controlā€resistant predators. There is increasing interest in harnessing evolutionary processes to drive adaptation of threatened fauna to cope, but there is limited attention on trying this from the predator direction. We need to shift the survival advantage away from predators that avoid lethal control, and go on to kill, towards those that demonstrate behaviors that reduce impact on threatened fauna. Instead of driving undesirable predator selection, could we select through management actions desirable traits to make them ā€œless lethalā€ to threatened fauna? We draw on experimental research on predator aversion that suggests there may be an alternative way to mitigate the impacts of predators, while maintaining the learning opportunities of prey species. Using the case study of the invasive red fox in Australia, we propose a conceptual framework within which future research and management could occur to select for these desirable traits in predators and develop practical regimes for predator impact mitigation

    Analysis of alternative splicing of cassette exons at single-cell level using two fluorescent proteins

    Get PDF
    Alternative splicing plays a major role in increasing proteome complexity and regulating gene expression. Here, we developed a new fluorescent protein-based approach to quantitatively analyze the alternative splicing of a target cassette exon (skipping or inclusion), which results in an open-reading frame shift. A fragment of a gene of interest is cloned between red and green fluorescent protein (RFP and GFP)-encoding sequences in such a way that translation of the normally spliced full-length transcript results in expression of both RFP and GFP. In contrast, alternative exon skipping results in the synthesis of RFP only. Green and red fluorescence intensities can be used to estimate the proportions of normal and alternative transcripts in each cell. The new method was successfully tested for human PIG3 (p53-inducible gene 3) cassette exon 4. Expected pattern of alternative splicing of PIG3 minigene was observed, including previously characterized effects of UV light irradiation and specific mutations. Interestingly, we observed a broad distribution of normal to alternative transcript ratio in individual cells with at least two distinct populations with āˆ¼45% and >95% alternative transcript. We believe that this method is useful for fluorescence-based quantitative analysis of alternative splicing of target genes in a variety of biological models

    A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level

    Get PDF
    The complexity of mammalian transcriptomes is compounded by alternative splicing which allows one gene to produce multiple transcript isoforms. However, transcriptome comparison has been limited to differential analysis at the gene level instead of the individual transcript isoform level. High-throughput sequencing technologies and high-resolution tiling arrays provide an unprecedented opportunity to compare transcriptomes at the level of individual splice variants. However, sequence read coverage or probe intensity at each position may represent a family of splice variants instead of one single isoform. Here we propose a hierarchical Bayesian model, BASIS (Bayesian Analysis of Splicing IsoformS), to infer the differential expression level of each transcript isoform in response to two conditions. A latent variable was introduced to perform direct statistical selection of differentially expressed isoforms. Model parameters were inferred based on an ergodic Markov chain generated by our Gibbs sampler. BASIS has the ability to borrow information across different probes (or positions) from the same genes and different genes. BASIS can handle the heteroskedasticity of probe intensity or sequence read coverage. We applied BASIS to a human tiling-array data set and a mouse RNA-seq data set. Some of the predictions were validated by quantitative real-time RTā€“PCR experiments

    The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters

    Get PDF
    It has been long considered that zinc homeostasis in bacteria is maintained by export systems and uptake systems, which are separately controlled by their own regulators and the uptake systems are negatively regulated by Zur which binds to an about 30-bp AT-rich sequence known as Zur-box present in its target promoters to block the entry of RNA polymerase. Here, we demonstrated in vivo and in vitro that in addition to act as a repressor of putative Zn2+-uptake systems, the Zur of the bacterial phytopathogen Xanthomonas campestris pathovar campestris (Xcc) acts as an activator of a Zn2+ efflux pump. The Xcc Zur binds to a similar Zur-box with āˆ¼30-bp AT-rich sequence in the promoters of the genes encoding putative Zn2+-uptake systems but a 59-bp GC-rich sequence with a 20-bp inverted repeat overlapping the promoter's āˆ’35 to āˆ’10 sequence of the gene encoding a Zn2+-export system. Mutagenesis of the inverted repeat sequence resulted in abolishment of the in vitro binding and the in vivo and in vitro activation of the export gene's promoter by Zur. These results reveal that the Xcc Zur functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters

    The development of polymerisation and surface modification techniques using diazirines as carbene precursors

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Composition-Property Relationships of pH-Responsive Poly[(2-vinylpyridine)-co-(butyl methacrylate)] Copolymers for Reverse Enteric Coatings

    No full text
    The taste-masking of bitter-tasting active pharmaceutical ingredients is key to ensuring patient compliance when producing oral pharmaceutical formulations. This is generally achieved via the incorporation of pH-responsive, reverse enteric polymers, that prevent the dissolution of the formulation in the oral environment, but rapidly mediate it within the gastric environment. Reverse enteric polymers are commonly applied as coatings on oral dosage forms via spray atomisation (e.g., fluidised-bed spray coating), and generally exhibit the most efficient taste-masking. However, currently used reverse enteric coatings require high mass gains (% w/w) during coating to mediate taste-masking, and thereby exhibit delayed release within the gastric environment. Therefore, there remains a need for the development of new reverse enteric coatings, that can efficiently taste-mask at low mass gains and maintain rapid release characteristics within the gastric environment. Herein we report the synthesis and evaluation of a series of addition copolymers of 2-vinylpyridine and butyl methacrylate, methyl methacrylate and isobornyl methacrylate. The thermal, solubility, and water absorption properties of the copolymers were effectively tuned by altering the mol% fraction of the constitutive monomers. Based on their physical properties, selected copolymers were preliminarily evaluated for their compatibility with fluidised-bed spray coating, and effectiveness as taste-masking reverse enteric coatings. The copolymers poly[(2-vinylpyridine)-co-(butyl methacrylate)] (mol% ratio 40:60) and poly[(2-vinylpyridine)-co-(butyl methacrylate)-co-(methyl methacrylate)] (mol% ratio 40:50:10) were found to exhibit excellent taste-masking properties following fluidised-bed spray coating onto SugletsĀ® sugar spheres. SugletsĀ® bearing a film coating of either copolymer (5.2ā€“6.5% w/w mass gain) were found to effectively impede the release of a model drug formulation for up to 72 h in a simulated salivary environment, and rapidly release it (<10 min) within a simulated gastric environment. The results demonstrated the potential of poly[(2-vinylpyridine)-co-(butyl methacrylate)] copolymers to form effectively taste-masked, reverse enteric dosage forms, and suggested that these copolymers may provide improved performance compared to currently available polymers

    Micromechanical properties of almond kernels with various moisture content levels

    No full text
    Almond fruits are subjected to various mechanical stresses throughout production, from harvest to processing, storage and packaging. Kernel properties play an important role in reducing mechanical damage such as scratches and penetration of shell pieces. Knowledge of kernel properties under various conditions of the fruit can assist in optimising post-harvest and processing lines to minimise kernel damage and thus maximise final kernel quality. Kernel moisture content is one of the main attributes affecting the kernelā€™s response to mechanical processing. Increasing the kernel moisture content to an optimum level through wetting fruit prior to processing can lead to a reduced percentage of damaged kernel. Water added to the structure of kernels acted as a plasticiser and helped the kernels to absorb the mechanical load instead of fracturing and breaking into pieces. In this study, tests were conducted on almond kernels with different moisture content levels from 5.52 to 14.09g/100g wet basis. Kernels from a Nonpareil variety were tested in dried and wetted conditions. Test results showed that kernels with higher moisture content were able to undergo a larger deformation at a given force value in comparison with dry kernels. Average deformation for dry samples was from 0.12 mm, which increased to an average of 0.25 mm in wetted samples. The effect of skin on the mechanical properties of the kernels (with and without skin) was studied using a mechanical tester. The test results showed a peak force value in samples tested with skin in comparison with the kernels tested without skin

    Recycling of Selective Laser Sintering Waste Nylon Powders into Fused Filament Fabrication Parts Reinforced with Mg Particles

    No full text
    This paper presents recycling of selective laser sintering (SLS) waste nylon into printable filaments and parts reinforced with Mg particles. Waste nylon and wasteā€“Mg powder mixture with 2%, 4%, and 8% Mg to nylon were extruded into the filaments. Moisture absorption, differential scanning calorimetry, and melt flow index experiments were conducted to determine the thermal characteristics, while tensile and flexural tests were conducted to evaluate mechanical properties and failure mechanisms. The results were compared with off-the-self (OTS) nylon. Waste powder was found to be extrudable and printable as FFF filament. Waste filament diameter closely matched standard filament size, while exhibiting reduced moisture absorption. High melting and crystallisation temperature for the waste nylon demonstrated a degradation of the plastic during the SLS process. Youngā€™s modulus and ultimate tensile strength for the waste filament increased by 1.6-fold compared to that for OTS, while Mg-composite filament surpassed the waste and OTS. Waste and Mg composite dog bone results showed an increase in strength and stiffness, but the ductility deteriorated. Both flexural strength and modulus for the waste nylon increased by 13% and 26%, respectively, over OTS, and the addition of Mg enhanced flexural strength by up to 5-fold at 8% Mg over the waste. Printed surface topography demonstrated that the waste and Mg composite filaments can print the parts with desired geometric shapes and acceptable surface texture. The findings showed that recycling waste SLS powder into FFF prints would be a viable and useful alternative to disposal, given its abundance
    • ā€¦
    corecore