13 research outputs found

    Vem Àr det som sjunger? - Utforskande av identitet i röst och popmusik

    Get PDF
    I denna uppsats har författaren laborerat med olika identitetsmarkörer som finns inbÀddade i hans egen musik. Författaren har skrivit och producerat en lÄt i vilken han sjÀlv Àr vokalisten. Han har sedan manipulerat sin röst i tre olika versioner med hjÀlp av mjukvara som pÄverkar pitch och formant för att skapa en "neutral", en "feminiserad" och en "artificiell" version av lÄten. Dessa tre versioner har författaren sedan skickat ut tillsammans en enkÀt till ett antal respondenter som har fÄtt svara pÄ öppna frÄgor kring hur de upplever de olika versionerna och vad de fÄr för bild av avsÀndaren. Svaren frÄn respondenterna har sedan sammanstÀllts och analyserats för att försöka hitta gemensamma nÀmnare och pÄ sÀtt skapa en bild av vad deltagarna uppfattar. Svaren har visat pÄ att de versioner dÀr det framgÄtt av rösten att författaren Àr man har deltagarna specificerat pop-genren med tillÀggsord eller andra genrer. Medan den version dÀr författaren feminiserat sin röst har i större utstrÀckning uppfattats som endast pop. Skillnaden gÀller Àven för artistens utseende dÀr den manliga beskrivs i mer generella termer och den kvinnliga i mer specifika. Det författaren kommit fram till i detta arbete Àr att hans egna identitet inte kommer med i musiken han skapar. Identiteten i musiken verkar snarare skapas av lyssnarens associationer till tidigare musik och normer och stereotyper i samhÀllet i stort. Författaren stÀller sig den nya frÄgestÀllningen: om samma undersökning gjorts i större skala hur hade resultatet pÄverkats dÄ

    Free Thyroxine Levels are Associated with Cold Induced Thermogenesis in Healthy Euthyroid Individuals

    Get PDF
    Thyroid hormone (TH) is an important regulator of mammalian metabolism and facilitates cold induced thermogenesis (CIT) in brown adipose tissue (BAT). Profound hypothyroidism or hyperthyroidism lead to alterations in BAT function and CIT. In euthyroid humans the inter-individual variation of thyroid hormones is relatively large. Therefore, we investigated whether levels of free thyroxine (T4) or free triiodothyronine (T3) are positively associated with CIT in euthyroid individuals. We performed an observational study in 79 healthy, euthyroid volunteers (mean age 25.6 years, mean BMI 23.0 kg · m-2). Resting energy expenditure (REE) was measured by indirect calorimetry during warm conditions (EEwarm) and after a mild cold stimulus of two hours (EEcold). CIT was calculated as the difference between EEcold and EEwarm. BAT activity was assessed by 18F-FDG-PET after a mild cold stimulus in a subset of 26 participants. EEcold and CIT were significantly related to levels of free T4 (R2 = 0.11, p=0.0025 and R2 = 0.13, p=0.0011, respectively) but not to free T3 and TSH. Cold induced BAT activity was also associated with levels of free T4 (R2 = 0.21, p=0.018). CIT was approximately fourfold higher in participants in the highest tertile of free T4 as compared to the lowest tertile. Additionally, free T4 was weakly, albeit significantly associated with outdoor temperature seven days prior to the respective study visit (R2 = 0.06, p=0.037). These finding suggests that variations in thyroid hormone levels within the euthyroid range are related to the capability to adapt to cool temperatures and affect energy balance. Keywords: brown adipose tissue; cold adaptation; cold induced thermogenesis; energy expenditure; thyroid hormone; thyroxine

    Fluvastatin Reduces Glucose Tolerance in Healthy Young Individuals Independently of Cold Induced BAT Activity

    Get PDF
    Background: Statins are commonly prescribed for primary and secondary prevention of atherosclerotic disease. They reduce cholesterol biosynthesis by inhibiting hydroxymethylglutaryl-coenzyme A-reductase (HMG-CoA-reductase) and therefore mevalonate synthesis. Several studies reported a small, but significant increase in the diagnosis of diabetes mellitus with statin treatment. The molecular mechanisms behind this adverse effect are not yet fully understood. Brown adipose tissue (BAT), which plays a role in thermogenesis, has been associated with a reduced risk of insulin resistance. Statins inhibit adipose tissue browning and have been negatively linked to the presence of BAT in humans. We therefore speculated that inhibition of BAT by statins contributes to increased insulin resistance in humans. Methods: A prospective study was conducted in 17 young, healthy men. After screening whether significant cold-induced thermogenesis (CIT) was present, participants underwent glucose tolerance testing (oGTT) and assessment of BAT activity by FDG-PET/MRI after cold-exposure and treatment with a ÎČ3-agonist. Fluvastatin 2x40mg per day was then administered for two weeks and oGTT and FDG-PET/MRI were repeated. Results: Two weeks of fluvastatin treatment led to a significant increase in glucose area under the curve (AUC) during oGTT (p=0.02), reduction in total cholesterol and LDL cholesterol (both p<0.0001). Insulin AUC (p=0.26), resting energy expenditure (REE) (p=0.44) and diet induced thermogenesis (DIT) (p=0.27) did not change significantly. The Matsuda index, as an indicator of insulin sensitivity, was lower after fluvastatin intake, but the difference was not statistically significant (p=0.09). As parameters of BAT activity, mean standard uptake value (SUVmean) (p=0.12), volume (p=0.49) and total glycolysis (p=0.74) did not change significantly during the intervention. Matsuda index, was inversely related to SUVmean and the respiratory exchange ratio (RER) (both R2 = 0.44, p=0.005) at baseline, but not after administration of fluvastatin (R2 = 0.08, p=0.29, and R2 = 0.14, p=0.16, respectively). Conclusions: Treatment with fluvastatin for two weeks reduced serum lipid levels but increased glucose AUC in young, healthy men, indicating reduced glucose tolerance. This was not associated with changes in cold-induced BAT activity.ISSN:1664-239

    Low-dose F-18-FDG TOF-PET/MR for accurate quantification of brown adipose tissue in healthy volunteers

    Get PDF
    Background Positron emission tomography (PET) is increasingly applied for in vivo brown adipose tissue (BAT) research in healthy volunteers. To limit the radiation exposure, the injected 18F-FDG tracer dose should be as low as possible. With simultaneous PET/MR imaging, the radiation exposure due to computed tomography (CT) can be avoided, but more importantly, the PET acquisition time can often be increased to match the more extensive magnetic resonance (MR) imaging protocol. The potential gain in detected coincidence counts, due to the longer acquisition time, can then be applied to decrease the injected tracer dose. The aim of this study was to investigate the minimal 18F-FDG dose for a 10-min time-of-flight (TOF) PET/MR acquisition that would still allow accurate quantification of supraclavicular BAT volume and activity. Methods Twenty datasets from 13 volunteers were retrospectively included from a prospective clinical study. PET emission datasets were modified to simulate step-wise reductions of the original 75 MBq injected dose. The resulting PET images were visually and quantitatively assessed and compared to a 4-min reference scan. For the visual assessment, the image quality and artifacts were scored using a 5-point and a 3-point Likert scale. For the quantitative analysis, image noise and artifacts, BAT metabolic activity, BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were investigated. Results The visual assessment showed still good image quality for the 35%, 30%, and 25% activity reconstructions with no artifacts. Quantitatively, the background noise was similar to the reference for the 35% and 30% activity reconstructions and the artifacts started to increase significantly in the 25% and lower activity reconstructions. There was no significant difference in supraclavicular BAT metabolic activity, BMV, and TBG between the reference and the 35% to 20% activity reconstructions. Conclusions This study indicates that when the PET acquisition time is matched to the 10-min MRI protocol, the injected 18F-FDG tracer dose can be reduced to approximately 19 MBq (25%) while maintaining image quality and accurate supraclavicular BAT quantification. This could decrease the effective dose from 1.4 mSv to 0.36 mSv.ISSN:2191-219

    Relation of diet-induced thermogenesis to brown adipose tissue activity in healthy men

    Full text link
    Human brown adipose tissue (BAT) is a thermogenic tissue activated by the sympathetic nervous system in response to cold exposure. It contributes to energy expenditure (EE) and takes up glucose and lipids from the circulation. Studies in rodents suggest that BAT contributes to the transient rise in EE after food intake, so-called diet-induced thermogenesis (DIT). We investigated the relationship between human BAT activity and DIT in response to glucose intake in 17 healthy volunteers. We assessed DIT, cold-induced thermogenesis (CIT), and maximum BAT activity at three separate study visits within 2 wk. DIT was measured by indirect calorimetry during an oral glucose tolerance test. CIT was assessed as the difference in EE after cold exposure of 2-h duration as compared with warm conditions. Maximal activity of BAT was assessed by 18-F-fluoro-deoxyglucose (18F-FDG) 18F-FDG-PET/MRI after cold exposure and concomitant pharmacological stimulation with mirabegron. Seventeen healthy men (mean age = 23.4 yr, mean body mass index = 23.2 kg/m2) participated in the study. EE increased from 1,908 (±181) kcal/24 h to 2,128 (±277) kcal/24 h (P < 0.0001, +11.5%) after mild cold exposure. An oral glucose load increased EE from 1,911 (±165) kcal/24 h to 2,096 (±167) kcal/24 h at 60 min (P < 0.0001, +9.7%). The increase in EE in response to cold was significantly associated with BAT activity (R2 = 0.43, P = 0.004). However, DIT was not associated with BAT activity (R2 = 0.015, P = 0.64). DIT after an oral glucose load was not associated with stimulated 18F-FDG uptake into BAT, suggesting that DIT is independent from BAT activity in humans (Clinicaltrials.gov Registration No. NCT03189511).NEW & NOTEWORTHY Cold-induced thermogenesis (CIT) was related to BAT activity as determined by FDG-PET/MRI after stimulation of BAT. Diet-induced thermogenesis (DIT) was not related to stimulated BAT activity. Supraclavicular skin temperature was related to CIT but not to DIT. DIT in humans is probably not a function of BAT

    Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring

    Get PDF
    Recent research has focused on environmental effects that control tissue functionality and systemic metabolism. However, whether such stimuli affect human thermogenesis and body mass index (BMI) has not been explored. Here we show retrospectively that the presence of brown adipose tissue (BAT) and the season of conception are linked to BMI in humans. In mice, we demonstrate that cold exposure (CE) of males, but not females, before mating results in improved systemic metabolism and protection from diet-induced obesity of the male offspring. Integrated analyses of the DNA methylome and RNA sequencing of the sperm from male mice revealed several clusters of co-regulated differentially methylated regions (DMRs) and differentially expressed genes (DEGs), suggesting that the improved metabolic health of the offspring was due to enhanced BAT formation and increased neurogenesis. The conclusions are supported by cell-autonomous studies in the offspring that demonstrate an enhanced capacity to form mature active brown adipocytes, improved neuronal density and more norepinephrine release in BAT in response to cold stimulation. Taken together, our results indicate that in humans and in mice, seasonal or experimental CE induces an epigenetic programming of the sperm such that the offspring harbor hyperactive BAT and an improved adaptation to overnutrition and hypothermia
    corecore