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Thyroid hormone (TH) is an important regulator of mammalian metabolism and facilitates

cold induced thermogenesis (CIT) in brown adipose tissue (BAT). Profound

hypothyroidism or hyperthyroidism lead to alterations in BAT function and CIT. In

euthyroid humans the inter-individual variation of thyroid hormones is relatively large.

Therefore, we investigated whether levels of free thyroxine (T4) or free triiodothyronine (T3)

are positively associated with CIT in euthyroid individuals. We performed an observational

study in 79 healthy, euthyroid volunteers (mean age 25.6 years, mean BMI 23.0 kg · m-2).

Resting energy expenditure (REE) was measured by indirect calorimetry during warm

conditions (EEwarm) and after a mild cold stimulus of two hours (EEcold). CIT was calculated

as the difference between EEcold and EEwarm. BAT activity was assessed by 18F-FDG-PET

after a mild cold stimulus in a subset of 26 participants. EEcold and CIT were significantly

related to levels of free T4 (R2 = 0.11, p=0.0025 and R2 = 0.13, p=0.0011, respectively)

but not to free T3 and TSH. Cold induced BAT activity was also associated with levels of

free T4 (R2 = 0.21, p=0.018). CIT was approximately fourfold higher in participants in the

highest tertile of free T4 as compared to the lowest tertile. Additionally, free T4 was weakly,

albeit significantly associated with outdoor temperature seven days prior to the respective

study visit (R2 = 0.06, p=0.037). These finding suggests that variations in thyroid hormone

levels within the euthyroid range are related to the capability to adapt to cool temperatures

and affect energy balance.
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INTRODUCTION

Thyroid hormone (TH) is an important regulator of mammalian

metabolism and resting energy expenditure (REE) (1). Overt
hyperthyroidism increases REE and food intake (2), and

stimulates gluconeogenesis (3) as well as lipolysis (4) while overt

hypothyroidism has the opposite effect (5–7). However, the

consequences of subtle changes in thyroid hormone levels on

metabolism are less certain. Several cross-sectional studies suggest

that variations of free thyroxine (free T4) and free triiodothyronine
(free T3) within the reference range are associated with metabolic

health (8–11). In mammals, TH is crucial for the maintenance of

body core temperature by positively regulating thermogenesis (12).

TH affects virtually all metabolically active tissues and among others

Brown adipose tissue (BAT) is an important target of TH action

(13). BAT is a thermogenic tissue and is activated by the

sympathetic nervous system in response to mild cold exposure.
The resulting increase in REE is called “cold induced

thermogenesis” (CIT) (13). Brown adipocytes contain a high

amount of mitochondria which harbor uncoupling protein 1

(UCP1) in the inner mitochondrial membrane. UCP1 is exclusive

to brown adipocytes and can convert chemical energy directly into

heat by short-circuiting oxidative phosphorylation (14). Research in
both rodents (15) and humans (16) indicates favorable effects of

active BAT onmetabolism, such as a reduction in blood glucose and

triglycerides and lipoproteins suggesting that more active BAT

could contribute to a metabolically healthy phenotype.

Recently, we demonstrated that CIT is reduced in hypothyroid

individuals and can be restored by sufficient thyroid hormone

replacement (17). In the present study, we investigated whether levels
of thyroid hormones within the reference range in healthy, euthyroid

individuals are connected to EE at warm and cold temperatures.

MATERIALS AND METHODS

Subjects
We collected data of healthy volunteers from a prospective

observational study [clinicaltrials.gov ID: NCT02682706 (18)] and

the screening data from two interventional trials [NCT03189511

(19) and NCT03269747]. All participants were recruited via local

advertisement at the endocrine outpatient clinic at the University

Hospital Basel. Inclusion criteria were as follows: age 18 to 40 years,
female and male persons with a BMI of 17.5 to 27 kg/m2 for

NCT02682706. Male persons with a BMI of 17.5 to 27 kg/m2 for

NCT03189511 and NCT03269747. We excluded participants with

chronic heart failure, liver cirrhosis, kidney failure, active cancer,

thyroid hormone disorders or intake of the following medication:

Non-steroidal anti-inflammatory drugs (NSAID), glucocorticoids,
diuretics, antihypertensives, fibrates or statins, metformin. From

March 2016 to February 2019 we included a total of 79

healthy participants.

The ethical review board of Northwest and Central

Switzerland (EKNZ) approved the studies and all participants

provided written informed consent.

Energy Expenditure and Cold
Induced Thermogenesis
Resting energy expenditure (REE) was measured for 30 minutes by

indirect calorimetry using a ventilated canopy calorimeter (Quark

RMR, Cosmed, Rome, Italy). Participants fasted for at least 6 hours
prior to the study visit and were asked to refrain from intensive

physical activity 24 hours before the scheduled study visit. We

measured EE during warm conditions (EEwarm) and after a

standardized, mild cold stimulus (EEcold). All visits took place in

an air-conditioned study room at a controlled ambient temperature

of 24°C year round. For determination of EEwarm participants were
placed in a hospital bed in a supine position and were covered with a

fleece blanket. After the first measurement, the blanket was removed

and the patients were asked to wear only a t-shirt and shorts.

Participants were additionally exposed to mild cold using a water

circulated cooling system (Hilotherm clinic, Hilotherm GmbH,

Germany) around the patient’s waist. The water temperature was

continuously reduced by 1°C every two minutes from 25°C to a
minimum of 10°C. During the cooling participants were asked

repeatedly if they experienced cold or noticed shivering. In case of

shivering they were covered with a blanket for 5 minutes and the

water temperature was raised by 2°C until the shivering stopped.

The total cooling time was 120 minutes. During the last 30 minutes

of the cooling the measurement of EEcold was performed. Cold
induced thermogenesis (CIT) was calculated as the difference

between EEcold and EEwarm. Relative CIT was calculated as the

percentage of EEwarm in the respective subject in order to correct for

variations in size.

Measurements of Skin and
Tympanic Temperatures
During the experiment we continuously measured the skin
temperature every 60 seconds with self-contained temperature

probes (iButton DS1922L, Maxim Integrated Products, Inc, San

Jose, CA) at the following eight defined body locations:

Supraclavicular region (right and left), parasternal at the level

of the 2nd intercostal space (right and left), umbilicus, mid-thigh

(right and left), middle of the lower arm palmar side, finger tip of
the 3rd finger of the non-dominant hand, and middle of the

lower left leg, back of the left foot. The temperature data of every

location during the last ten minutes of warm and cold phase,

respectively, were averaged.

The tympanic temperature was measured with infrared

tympanometry (Braun, ThermoScan PRO 6000, Marlborough,

MA) before and after cold exposure.

18F-FDG-PET/CT and 18F-FDG-
PET/MR Measurements
In a subset of participants we analyzed BAT activity by 18F-FDG-

PET which was performed after controlled cold exposure in 17 and

16 participants in the context of two clinical trials [trial 1:

Abbreviations: AMPK, Adenosine Monophosphate-Activated Protein Kinase;

BAT, Brown Adipose Tissue; BMI, Body Mass Index; CIT, Cold Induced

Thermogenesis; DIO 2, Deiodinase 2; EE, Energy Expenditure; FDG,

Fluordesoxyglucose; fT3, Free Triiodothyronine; fT4, Free Thyroxine; TH,

Thyroid Hormone; TSH, Thyroid Stimulating Hormone; UCP1, Uncoupling

Protein 1; REE, Resting Energy Expenditure.
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NCT03189511 (19) and trial 2: NCT03269747]. Specifically, the

participants who qualified for the interventional trials continued to
18F-FDG-PET. Briefly, participants were exposed to mild cold for

two hours using a Hilotherm clinic cooling device as described

above. In trial 1 BAT was further stimulated by oral administration

of 200 mg of Mirabegron 90 minutes before the onset of cooling
(Betmiga, Astellas Pharma, Wallisellen, Switzerland). In both trials,

participants received 75 MBq 18F-FDG intravenously directly after

the cold exposure. PET scans were performed on a SIGNAPET/MR

(GE Healthcare, Waukesha, WI, USA; trial 1) or a Siemens

Biograph mCT (Siemens Healthineers, Erlangen, Germany; trial

2), respectively. We compared the SUVmean of supraclavicular
adipose tissue to the levels of free T4 measured before the

stimulation of BAT. In this setting, TH was measured in 10

participants from trial 1 and 16 participants from trial 2.

Laboratory Analysis
Blood was sampled into serum monovettes (Sarstedt, Germany) at

the beginning of the study visit with all subjects fasted for at least six

hours. They were also asked to refrain from strenuous exercise
during the 24 hours before attending the study. Samples were left

standing for 30 minutes and were then centrifuged at 3000xg at 4°C.

TSH and free T4 were measured at the central lab of the

University Hospital Basel. For TSH and free T4 electro-

chemiluminescence immunoassay (Elecsys, all assays from

Roche Diagnostics AG, Rotkreuz, Switzerland) were used. The
reference range for TSH was 0.33 – 4.49 mIU · l-1. The fT4 levels

had a reference range of 11.6-22.0 pM. The reference ranges were

established at the central lab of the University Hospital Basel.

Thyroglobulin and free T3 were analysed at a specialized

endocrine laboratory (SpezialLABOR, Basel, Switzerland) on a

Siemens Immulite 2000 Systems (Siemens Healthcare Diagnostic

Products Ltd., Gwynedd, UK). The reference range was 2.8–6.5
pM for free T3 and 1.6 and 59.9 ng · ml-1 for thyroglobulin.

Reference ranges for these parameters were according to the

manufacturer’s package insert.

Meteorological Data
The Institute for Meteorology, Climatology and Remote Sensing

at the University of Basel provided daily mean, maximum and
minimum temperatures for all days during the study period. The

outdoor temperatures were recorded at an urban meteorological

station nearby the University Hospital Basel. Mean daily

temperatures were averaged over a period of 7 days prior to

the respective study visit.

Statistical Analysis
Data were analysed using R Version 3.5 (20) and GraphPad
Prism Version 9 (GraphPad, La Jolla, CA). Continuous data are

given as mean ± SD unless stated otherwise. TSH values were not

normally distributed and log-transformed before further

analysis. Simple linear regression was performed for measures

of EE and TH levels. In order to correct for potential

confounding factors linear modeling was performed as follows:
All continuous variables were scaled by Z-scaling. A linear model

was built in R containing all anthropometric and laboratory

values. Thereafter the model was refined stepwise in order to

reduce the number of variables to only significant ones. A p-value

below 0.05 was considered significant.

RESULTS

Baseline Characteristics
All participants were healthy, euthyroid and had a mean age of

about 25 years. Due to the study design of the two interventional

trials, the majority of subjects was male. Baseline anthropometric

data and thyroid hormone values are given in Table 1.

Skin and Tympanic Temperature in
Response to Cooling
In order to document a sufficient cold exposure we compared the

skin and tympanic temperatures in all subjects before and after

cold exposure. The tympanic temperature dropped only

minimally, albeit significantly (see Figure 1A). With the
exception of the supraclavicular region, the skin temperature

dropped significantly in all other skin regions. The reduction of

skin temperature was most pronounced in the umbilical region

as the sensor was intentionally placed below the cooling mattress

placed around the patients’ mid-section (see Figures 1B–I).

Association of Resting Energy Expenditure
to TSH, Free T4 and Free T3
In all study subjects, resting energy expenditure (REE) was

measured during warm conditions (EEwarm) and after a mild cold

stimulus of two hours (EEcold). TSH was not associated with CIT
(p=0.37), EEwarm (p=0.82) or EEcold (p=0.78).While EEwarmwas not

significantly associated with levels of free T4 (R2 = 0.03, p=0.12,

Figure 2A) it correlated significantly with levels of free T3 (R2 =

0.16, p=0.0004, Figure 2D). EEcold was weakly, albeit significantly

associated with levels of free T4 (R2 = 0.11, p=0.0025, Figure 2B)

and with free T3 (R2 = 0.11, p=0.0039, Figure 2E).

Association of Free T4 and Cold
Induced Thermogenesis
Cold induced thermogenesis (CIT) was calculated as the

difference between EEco ld and EEwarm . For a better

comparability of the interindividual variation of REE we
calculated relative CIT (CIT divided by EEwarm). Relative CIT

was significantly associated with free T4 (R2 = 0.13, p=0.0011,

Figure 2C) but not with free T3 (R2 = 0.00, p=0.90, Figure 2F). It

should be emphasized that all participants were euthyroid.

TABLE 1 | Clinical characteristics at baseline.

Baseline (n = 79, mean ± SD)

Age 25.6 ± 5.4

Sex (% male) 87% (69 male, 10 female)

Weight (kg) 74.1 ± 9.8

Height (cm) 179.1 ± 7.0

BMI (kg · m-2) 23.0 ± 2.3

TSH (mU · L-1) 2.0 ± 0.9

free T4 (pM) 16.5 ± 2.2

free T3 (pM) 5.1 ± 0.69

Maushart et al. Thyroxine and Cold Induced Thermogenesis
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In order to assess the clinical relevance of our findings we

stratified them into tertiles according to their free T4 levels
(Figure 3A). Importantly, the mean TSH level in all tertiles was

virtually identical (ANOVA p=0.89, Figure 3B).

In participants with a level of free T4 in the highest tertile (free

T4 17.5 to 21.0 pM) mean CIT was approximately four-fold

higher (10.2 ± 7.5% of EEwarm) than in those in the lowest tertile

(free T4 10.9 to 15.7 pM, mean CIT of 2.3 ± 8.7%, ANOVA
p=0.0057, trend p=0.0027, Figure 3C).

Multivariate Analysis of Factors
Associated with Energy Expenditure
and Cold Induced Thermogenesis
REE and CIT are known to be associated with several
anthropometric factors and outdoor temperature (21, 22).

Therefore, we performed multiple linear regression to analyze

whether levels of TH were still predictive of EEwarm, EEcold or
relative CIT.

EEwarm was significantly influenced by weight (p=0.023) and

sex (p<0.0001) of participants (Table 2A). For EEcold the outdoor

temperature during the week before the measurement of REE

was an additional significant predictor (p=0.0021) (Table 2B). In

both models, levels of TH did not affect REE. However, levels of
free T4 were significantly associated with CIT (p=0.020), as were

outdoor temperature (p=0.0035), height (p=0.0005) and weight

(p=0.0069) (Table 2C). We performed the same analysis also

with the warm (mean temperature ≥ 15.0°C) vs. cold season and

the meteorological season. In both models free T4 was a

significant predictor of CIT (p=0.0085 and p=0.0088). CIT was

inversely associated with the warm season as compared to the

A B

D E F

G IH

C

FIGURE 1 | Comparison of tympanic temperature and skin temperatures before and after mild cold exposure. (A) Tympanic temperature; Skin temperatures:

(B) Supraclavicular region; (C) Parasternal region; (D), Umbilicus; (E) Thigh; (F) Non-dominant forearm; (G) Middle finger, non dominant hand; (H) Left lower leg;

(I) Left dorsal foot. ****p<0.0001 in Wilcoxon-Signed-Rank Test, ns, p≥0.05.
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cold season (p=0.024). Using meteorological seasons as a factor

and comparing to autumn, summer was inversely correlated with

CIT (p=0.045), see Supplementary Table 1.

Association of Free T4 and Cold Induced
Metabolic Activity of Brown
Adipose Tissue
In order to further delineate the effects of free T4 on cold induced

metabolism we analysed PET/CT and PET/MR data which were

available for a subset of the participants. 18F-FDG-PET/CT and –

PET/MR had been performed after two hours of mild cold

exposure and were compared to the levels of free T4 in a

serum sample directly prior to BAT stimulation. SUVmean of
18F-FDG in the supraclavicular adipose tissue was significantly

associated with levels of free T4 (Figure 4, R2 = 0.21, p=0.018).

Association of Thyroid Function
Parameters and Outdoor Temperature
TH metabolism is increased during exposure to severe cold (23,

24). In the temperate climate of Basel, Switzerland, free T4 was

weakly, albeit significantly associated with outdoor temperature

(R2 = 0.06, p=0.037). This association persisted when weight and

sex were added to the regression model. Free T3 and TSH were
not related to outdoor temperature (R2 = 0.00, p=0.81, and R2 =

0.014, p=0.30, respectively, Table 3).

Levels of thyroglobulin are an endogenous marker of thyroid

hormone synthesis and have been shown to be substantially

increased in very cold climates (23). In our cohort and a

temperate climate zone we found no association of

thyroglobulin to outdoor temperature (R2 = 0.03, p=0.14).

DISCUSSION

In this study, we demonstrate that levels of free T4 within the
reference range in euthyroid, healthy individuals are significantly

associated with CIT. This association persisted after multivariate

correction for other parameters known to influence CIT. Further,

we provide evidence that this effect may be caused at least

partially by an influence on BAT activity.
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FIGURE 2 | Free T4 within the reference range was not significantly related to energy expenditure during warm conditions (EEwarm, R
2 = 0.03, p=0.12, (A), but to

energy expenditure during mild cold exposure (EEcold, R
2 = 0.11, p=0.0025, (B) and to relative cold induced thermogenesis (CIT, R2 = 0.13, p=0.0011, (C). Free T3

was significantly associated with EEwarm (R2 = 0.16, p=0.0004, (D), EEcold (R2 = 0.11, p=0.0039, (E), but not with CIT (R2 = 0.00, p=0.90, (F).
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In standard clinical practice, TSH is considered to be the most

sensitive and cost-effective test of thyroid function. A value

within the reference range is considered to be a robust marker

of euthyroid hormone levels. All healthy volunteers participating

in our study had normal serum TSH levels indicating normal
thyroid function. However, measuring levels of free thyroxin

(free T4) and free liothyronine (free T3) allows a more detailed

overview of thyroid function. The population based reference

ranges for free T4 and free T3 are relatively large (25–27)

suggesting potential effects on metabolism. We therefore

investigated whether these differences in levels of free T4 and

free T3 affect human thermogenesis.

Previously, we and others were able to demonstrate that REE

is reduced in hypothyroidism and that restoring euthyroidism

normalizes REE in humans (17, 28). Here, higher levels of free T4
within the reference range did not lead to higher REE at room

temperature in euthyroid individuals, which is in line with a

recent study in a larger cohort (29). Interestingly, levels of free T3

were significantly associated with REE at room temperature. Of

note, this association did not persist after multivariate correction.

In a similar population as the one studied here, Roef et al. found a
significant positive association of free T3 with BMI (30) which

might explain this finding. As T4 is mainly converted to T3

intracellularly by DIO2 in brown adipocytes, the levels of T3

measured in serum do not necessarily reflect the levels within

BAT (31).

In contrast, levels of free T4 but not free T3 were positively
associated with CIT in our cohort. CIT reflects the increase in

REE in response to cool environmental temperatures in order to

maintain core body temperature. BAT is one of the main tissues

to facilitate CIT and is a well-established target of TH action.

BAT expresses high amounts of deiodinase type 2 (DIO2)

which locally converts T4 into T3 and which is induced by cold

exposure (32, 33). These mechanisms are crucial for
mitochondriogenesis and heat production (32). We assessed

BAT activity by FDG-PET in a subset of our cohort. Indeed,

we could demonstrate that higher levels of free T4 are

significantly associated with a higher metabolic activity of

BAT. In line with our data, circulating levels of free T4 within

the reference range were significantly related to markers of white
to brown adipocyte conversion in human subcutaneous adipose

tissue (34).

Importantly, the main stimulus of CIT in adult humans

appears to be cool environmental temperatures (21, 35, 36).

Previously, we could demonstrate that in hypothyroid

individuals the effect of environmental temperatures on CIT

seems to be abrogated (17). Therefore, we would like to speculate
that thyroid hormones facilitate the dynamic adaptations to cool

temperatures also in humans. This notion is supported by

findings in rats: thyroid ablation did not affect BAT function

after animals had been acclimated to cool temperatures.

However, if thyroid ablation was performed prior to chronic

cold exposure animals exhibited blunted function of BAT (37).
Furthermore, BAT activity and CIT differ substantially between

healthy individuals of comparable age and body composition.

Importantly, a significant proportion of participants in our study

reduced EE in response to cold exposure, i.e. had negative CIT. A

recent study showed that individuals reacting with negative CIT to

mild cold exposure do also reduce EE to a greater extent while

fasting. The authors suggested that this phenomenon might
therefore signify a “thrifty” phenotype (38).

In mice, strain specific differences in the ability to recruit

BAT have been demonstrated and suggest strong genetic

influences (39). In humans, genetic influences on BAT

recruitment have also been demonstrated (40, 41). Still, the

A

B

C

FIGURE 3 | Subjects were grouped into tertiles according their levels of free

T4 (A). The mean TSH levels of the three groups did not differ significantly

(ANOVA p=0.89, (B). In the highest tertile (free T4 17.5 to 21.0 pM) they had

mean CIT of 10.2 ± 7.5% of EEwarm while those in the lowest tertile (free T4

10.9 to 15.7 pM) had a mean CIT of 2.3 ± 8.7% (ANOVA p=0.0057, trend

p=0.0027, (C). **p<0.01; ****p<0.0001; ns, p≥0.05.
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underlying genetic alterations, molecular mechanisms, and
physiologic regulation have to be elucidated and might

comprise transcription factors involved in adipocyte

browning as well as thyroid hormone metabolism.

Our findings suggest, that slightly higher levels of free T4 allow

for better adaptation to cold environments. An increase in CIT,

e.g. by systematic mild cold exposure, has been demonstrated to

improve insulin sensitivity (16) and reduce body fat mass (42). In
line with these findings, large cohort studies in China and Belgium

demonstrated favorable effects of higher levels of thyroxine within

the reference range, in euthyroid individuals (11, 30), which might

be facilitated in part by CIT.

Previously, exposure to severe cold in the polar regions has been

demonstrated to increase TH metabolism in humans resulting in
increased levels of thyroglobulin and iodine excretion. However,

steady state levels of free T4 and free T3 were not increased or rather

reduced in these studies (23, 24). In our cohort, levels of thyroglobulin

were not associated with outdoor temperature or CIT, but free T4

was weakly associated with temperature. It should be noted that the

outdoor temperatures in the cited papers were approximately 20 to

30°C lower than in our study and might thus lead to different
adaptive effects. Systematic studies of TH levels in more temperate

climate zones comprise relatively few participants (43). Some of

TABLE 2 | Results of multiple linear regression.

A Energy Expenditure Warm

Model: EEwarm ~ fT4 + Temp7d + Height + Weight + Sex

Value Std. Error t-value p-value

(Intercept) -1.22 0.29 -4.22 <0.0001

fT4 -0.10 0.08 -1.13 0.26

Temp7d -0.11 0.08 -1.45 0.15

Height 0.16 0.11 1.47 0.15

Weight 0.27 0.11 2.32 0.023

Sex 1.39 0.32 4.37 <0.0001

Multiple R2: 0.60, Adjusted R2: 0.57

B Energy Expenditure Cold

Model: EEcold ~ fT4 + Temp7d + Height + Weight + Sex

Value Std. Error t-value p-value

(Intercept) -0.86 0.30 -2.90 0.0049

fT4 0.05 0.09 0.57 0.57

Temp7d -0.25 0.08 -3.19 0.0021

Height 0.42 0.11 3.84 0.0003

Weight -0.001 0.12 -0.01 0.99

Sex 0.99 0.33 3.00 0.0037

Multiple R2: 0.58, Adjusted R2: 0.55

C Cold Induced Thermogenesis

Model: CIT ~ fT4 + Temp7d + Height + Weight + Sex

Value Std. Error t-value p-value

(Intercept) 0.27 0.37 0.72 0.48

fT4 0.26 0.11 2.37 0.020

Temp7d -0.30 0.098 -3.02 0.0035

Height 0.50 0.14 3.64 0.0005

Weight -0.41 0.15 -2.78 0.0069

Sex -0.30 0.41 -0.74 0.46

Multiple R2: 0.34, Adjusted R2: 0.30

Reported values are coefficients from multiple linear regression with CIT as dependent variable. All scalar factors were Z-scaled prior to analysis. Significant associations are

indicated in bold.

FIGURE 4 | Levels of free T4 were significantly associated with the uptake of

fluoro-deoxyglucose (SUVmean) into supraclavicular brown adipose tissue

(R2 = 0.21, p=0.018). Diamonds: individual data points from trial 1

NCT03189511 (PET/MRI, BAT stimulation by Mirabegron and cold exposure),

Circles: individual data points from trial 2 NCT03269747 (PET/CT, BAT

stimulation by cold exposure).
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these studies also indicate a seasonal influence on thyroid hormone

levels (44). More recent analysis of very large datasets imply an
inverse influence of outdoor temperature on TSH (45, 46).

Our study is limited by its observational nature and we can

thus not prove causality. Strengths of our study comprise the

relatively large cohort of participants and the thorough and

prospective measurement of REE and CIT. Furthermore, we

took into account the environmental temperatures which are a

major factor influencing CIT. We could find evidence that BAT
activity was positively associated with levels of free T4 in a

subgroup of participants whom we investigated with FDG-PET.

In conclusion, we provide evidence for a link between TH and

CIT in healthy individuals. Our findings suggest that differences

in the level of TH even in euthyroid individuals affect

metabolism significantly and should be studied in further detail.
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