1,054 research outputs found

    INTEGRAZIONE TRA MONITORAGGIO E MODELLAZIONE DELLE GRANDI FRANE IN ROCCIA NELL'OTTICA DELL'ALLERTAMENTO RAPIDO

    Get PDF
    Nella presente nota si intendono illustrare gli sviluppi di un progetto di ricerca che prevede l'integrazione tra tecniche di monitoraggio e modelli numerici avanzati per lo studio delle grandi frane in roccia ai fini di un allertamento rapido delle popolazioni e delle infrastrutture esposte al rischio. In particolare tra le tecniche di monitoraggio si prenderanno in esame l'interferometria radar da terra (GBInSAR), mentre a livello di modellazione numerica l'attenzione verrà rivolta al metodo ibrido elementi finiti/elementi distinti (FDEM). Con riferimento ad alcuni casi reali, i modelli numerici, validati e calibrati sui dati di monitoraggio, verranno utilizzati per la produzione di scenari di evoluzione dei fenomeni franosi oggetto di studio. I risultati della modellazione consentiranno di definire particolari soglie (spostamenti, velocità, altezze piezometriche etc..), in base ai diversi scenari simulati, da cui si potrà ottenere una valutazione rapida del livello di criticità associata al fenomeno in esam

    fluorecence microscopy study of cds quantum dots obtained by laser irradiation from a single source precursor in polymeric film

    Get PDF
    Abstract Recently the quantum dots (QDs) synthesis from single source precursors (SSPs) showed a potential interest for patterning formation of nano-composites. In this approach the SSPs have to be mixed with a matrix that afterwards is treated selectively to obtain the desired nanocomposite. The study of the generation of the QDs from the SSPs is, therefore, crucial for the definition of its behaviour within the polymeric matrix. The formation of the CdS QDs via thermolysis of the cadmium diethyldithiocarbamate (CdDDTC) was performed and studied in the presence of a non coordinating solvent such as octadecene (ODE) in presence of myristic acid (MA) as ligand. The precursor is then studied in combination with the poly(methyl methacrylate) (PMMA) polymer for the generation of the CdS QDs under the laser irradiation within a film. The effect of the laser has been studied both on neat PMMA and on the polymer/precursor blend film with the aid of the fluorescence microscope. The results are used to identify the optimal laser parameters to obtain the decomposition of the precursor and to evaluate the effect of the laser irradiation on the polymer

    New fluorescent polymeric nanocomposites synthesized by antimony dodecyl-mercaptide thermolysis in polymer

    Get PDF
    In this work, the formation of semiconductive Sb2S3 nanoparticles inside amorphous polystyrene has been achieved by thermal degradation of the corresponding antimony dodecyl-mercaptide, Sb(SC12H25)3. The thermolysis of the dodecyl-mercaptide precursor was studied as both pure phase and mercaptide solution in polystyrene. The thermal decom- position of the antimony mercaptide precursor at 350°C, under vacuum, showed the formation of a mixture of antimony trisulfide (stibnite, Sb2S3) and zero-valent antimony (Sb) phase. X-ray Powder Diffraction (XRD) and Rietveld analysis carried out on the obtained nanostructured powder confirmed the presence of Sb and Sb2S3 phases in 10.4 wt% and 89.6 wt% amount, respectively. The same pyrolysis reaction was carried out in the polymer and the resulting nanocompos- ite material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-VIS spec- troscopy, and fluorescence spectroscopy. The nanocomposite structural characterization indicated the presence of well-dispersed nanoclusters of antimony and stibnite (15-30 nm in size) inside the amorphous polymeric phase. Optical measurements on the obtained nanocomposite films showed a strong emission at 432 nm upon excitation at 371 nm, prob- ably related to the presence of Sb2S3 nanoclusters

    INTEGRAZIONE TRA MONITORAGGIO E MODELLAZIONE DELLE GRANDI FRANE IN ROCCIA NELL’OTTICA DELL’ALLERTAMENTO RAPIDO

    Get PDF
    Nella presente nota si intendono illustrare gli sviluppi di un progetto di ricerca che prevede l’integrazione tra tecniche di monitoraggio e modelli numerici avanzati per lo studio delle grandi frane in roccia ai fini di un allertamento rapido delle popolazioni e delle infrastrutture esposte al rischio. In particolare tra le tecniche di monitoraggio si prenderanno in esame l’interferometria radar da terra (GBInSAR), mentre a livello di modellazione numerica l’attenzione verrà rivolta al metodo ibrido elementi finiti/elementi distinti (FDEM). Con riferimento ad alcuni casi reali, i modelli numerici, validati e calibrati sui dati di monitoraggio, verranno utilizzati per la produzione di scenari di evoluzione dei fenomeni franosi oggetto di studio. I risultati della modellazione consentiranno di definire particolari soglie (spostamenti, velocità, altezze piezometriche etc..), in base ai diversi scenari simulati, da cui si potrà ottenere una valutazione rapida del livello di criticità associata al fenomeno in esame

    First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope

    Get PDF
    The Cherenkov Telescope Array (CTA) represents the most advanced facility designed for Cherenkov Astronomy. ASTRI SST-2M has been developed as a demonstrator for the Small Size Telescope in the context of the upcoming CTA. Its main innovation consists in the optical layout which implements the Schwarzschild-Couder configuration and is fully validated for the first time. The ASTRI SST-2M optical system represents the first qualified example for two mirrors telescope for Cherenkov Astronomy. This configuration permits to (i) maintain a high optical quality across a large FoV (ii) de-magnify the plate scale, (iii) exploit new technological solutions for focal plane sensors. The goal of the paper is to present the optical qualification of the ASTRI SST-2M telescope. The qualification has been obtained measuring the PSF sizes generated in the focal plane at various distance from the optical axis. These values have been compared with the performances expected by design. After an introduction on the Gamma Astronomy from the ground, the optical design and how it has been implemented for ASTRI SST-2M is discussed. Moreover the description of the setup used to qualify the telescope over the full field of view is shown. We report the results of the first--light optical qualification. The required specification of a flat PSF of 10\sim 10 arcmin in a large field of view ~10 deg has been demonstrated. These results validate the design specifications, opening a new scenario for Cherenkov Gamma ray Astronomy and, in particular, for the detection of high energy (5 - 300 TeV) gamma rays and wide-field observations with CTA.Comment: 6 pages, 5 figure

    The EEE Project

    Get PDF
    The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air showers through muon detection is starting in Italy. The use of particle detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The installation of many of such 'telescopes' in numerous High Schools scattered all over the Italian territory will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi

    Photophysical and structural characterisation of in situ formed quantum dots

    Get PDF
    Conjugated polymer–semiconductor quantum dot (QD) composites are attracting increasing attention due to the complementary properties of the two classes of materials. We report a convenient method for in situ formation of QDs, and explore the conditions required for light emission of nanocomposite blends. In particular we explore the properties of nanocomposites of the blue emitting polymer poly[9,9-bis(3,5-di-tert-butylphenyl)-9H-fluorene] together with cadmium sulphide (CdS) and cadmium selenide (CdSe) precursors. We show the formation of emissive quantum dots of CdSe from thermally decomposed precursor. The dots are formed inside the polymer matrix and have a photoluminescence quantum yield of 7.5%. Our results show the importance of appropriate energy level alignment, and are relevant to the application of organic–inorganic systems in optoelectronic devices

    Development of Quantum Dot (QD) Based Color Converters for Multicolor Display.

    Get PDF
    Many displays involve the use of color conversion layers. QDs are attractive candidates as color converters because of their easy processability, tuneable optical properties, high photoluminescence quantum yield, and good stability. Here, we show that emissive QDs with narrow emission range can be made in-situ in a polymer matrix, with properties useful for color conversion. This was achieved by blending the blue-emitting pyridine based polymer with a cadmium selenide precursor and baking their films at different temperatures. To achieve efficient color conversion, blend ratio and baking temperature/time were varied. We found that thermal decomposition of the precursor leads to highly emissive QDs whose final size and emission can be controlled using baking temperature/time. The formation of the QDs inside the polymer matrix was confirmed through morphological studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Hence, our approach provides a cost-effective route to making highly emissive color converters for multi-color displays
    corecore