47 research outputs found

    First freshwater coralline alga and the role of local features in a major biome transition

    Get PDF
    Coralline red algae are significant components of sea bottom and up to now considered as exclusively marine species. Here we presentthe first coralline alga from a freshwater environment, found in theCetina River (Adriatic Sea watershed).The alga is fully adapted to freshwater, as attested by reproductive structures, sporelings, and an inability to survive brackish conditions. Morphological and molecular phylogenetic analyses revealthe species belongs to Pneophyllum and is described as P. cetinaensis sp. nov.The marine-freshwatertransition most probably occurred during the last glaciation. The brackish-water ancestor was preadapted to osmotic stress and rapid changes in water salinity and temperature.The particular characteristics ofthe karst Cetina River, such as hard water enriched with dissolved calcium carbonate and a pH similarto the marine environment, favoured colonization ofthe river by a marine species.The upstream advance and dispersal is facilitated by exceptionally pronounced zoochory by freshwater gastropods. Pneophyllum cetinaensis defies the paradigm of Corallinales as an exclusively marine group

    Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX2 Purification

    Get PDF
    Current efforts to reduce the density of structural defects such as surface passivation, doping, and modified synthetic protocols have allowed us to grow high-quality perovskite nanocrystals (PNCs). However, the role of the purity of the precursors involved during the PNC synthesis to hinder the emergence of defects has not been widely explored. In this work, we analyzed the use of different crystallization processes of PbX2 (X = Cl– or I–) to purify the chemicals and produce highly luminescent and stable CsPbCl3–xBrx and CsPbI3 PNCs. The use of a hydrothermal (Hyd) process to improve the quality of the as-prepared PbCl2 provides blue-emitting PNCs with efficient ligand surface passivation, a maximum photoluminescence quantum yield (PLQY) of ∼ 88%, and improved photocatalytic activity to oxidize benzyl alcohol, yielding 40%. Then, the hot recrystallization of PbI2 prior to Hyd treatment led to the formation of red-emissive PNCs with a PLQY of up to 100%, long-term stability around 4 months under ambient air, and a relative humidity of 50–60%. Thus, CsPbI3 light-emitting diodes were fabricated to provide a maximum external quantum efficiency of up to 13.6%. We claim that the improvement of the PbX2 crystallinity offers a suitable stoichiometry in the PNC structure, reducing nonradiative carrier traps and so maximizing the radiative recombination dynamics. This contribution gives an insight into how the manipulation of the PbX2 precursor is a profitable and potential alternative to synthesize PNCs with improved photophysical features by making use of defect engineering

    Fully Inkjet-Printed Green-Emitting PEDOT:PSS/NiO/Colloidal CsPbBr3/SnO2 Perovskite Light-Emitting Diode on Rigid and Flexible Substrates

    Get PDF
    After establishing themselves as promising active materials in the field of solar cells, halide perovskites are currently being explored for fabrication of low-cost, easily processable, and highly efficient light-emitting diodes (LEDs). Despite this, the highest efficiencies reported for perovskite-based LEDs (PeLEDs) are achieved through spin coating or vacuum evaporation deposition techniques, which are not adequate, in most of the cases, for an industrial-scale production. Additionally, the long-term stability is still a big handicap, even though all inorganic perovskites, such as CsPbBr3, are found to be more stable to external variables. In this context, herein, the fabrication of fully inkjet-printed (IJP) CsPbBr3-based PeLEDs in ambient conditions, on rigid and flexible substrates, on a proof-of-concept basis, with the successful incorporation of NiO and SnO2 as hole- and electron-selective contacts, respectively, is reported. Despite the moderate luminance (324 cd m−2) value obtained, this result paves the way toward the development of upscalable fabrication of PeLEDs based on deposition techniques with controlled spatial resolution.The authors wish to thank the financial support from the European Commission via FET Open Grant (862656, DROP-IT), MINECO (Spain) for grant PID2019-105658RB-I00 (PRITES project), Ministry of Science and Innovation of Spain under Project STABLE (PID2019-107314RB-I00), and Generalitat Valenciana via Prometeo Grant Q-Devices (Prometeo/2018/098)

    Proteomic analysis of Strongyloides stercoralis L3 larvae

    No full text
    Strongyloidiasis can be perpetuated by autoinfection with the filariform larvae L3, causing asymptomatic chronic infections and creating a population of carriers, affecting not only developing countries. So far, very little is known about the proteins that interact with the human host, and few proteins from the infective Strongyloides stercoralis L3 have been characterized. Here, we report results obtained from a proteomic analysis of the proteins from S. stercoralis L3 larvae obtained from patients. Since the genome of S. stercoralis is not yet available, we used proteomic analysis to identify 26 different proteins, 13 of them released by short digestion with trypsin, which could represent surface-associated proteins. The present work extends our knowledge of host-parasite interactions by identifying proteins that could be of interest in the development of diagnostic tools, vaccines, or treatments for a neglected disease like strongyloidiasis
    corecore