67 research outputs found

    Adult insect personality in the wild-Calopteryx splendens as a model for field studies

    Get PDF
    Animal personality has received increasing interest and acknowledgment within ecological research over the past two decades. However, some areas are still poorly studied and need to be developed. For instance, field studies focused on invertebrates are currently highly underrepresented in the literature. More studies including a wider variety of traits measured and species tested are needed to improve our understanding of trait-correlation patterns and generalities. We studied nine behavioral traits, in the damselfly Calopteryx splendens, from an array of three experiments: (i) courtship, (ii) aggressiveness, and (iii) boldness, and calculated their repeatability. The behaviors were measured twice in two different contexts: (i) undisturbed territory and (ii) partially deteriorated territory. Traits related to courtship and boldness were all repeatable across the two contexts. Among aggressive behaviors, only one trait (number of hits) was repeatable. This work demonstrates, for the first time, the presence of within-population personality differences in an adult damselfly in the wild. We further propose C. splendens as a promising model species for testing personality in the wild under highly controlled environmental conditions

    A Diagram Is Worth A Dozen Images

    Full text link
    Diagrams are common tools for representing complex concepts, relationships and events, often when it would be difficult to portray the same information with natural images. Understanding natural images has been extensively studied in computer vision, while diagram understanding has received little attention. In this paper, we study the problem of diagram interpretation and reasoning, the challenging task of identifying the structure of a diagram and the semantics of its constituents and their relationships. We introduce Diagram Parse Graphs (DPG) as our representation to model the structure of diagrams. We define syntactic parsing of diagrams as learning to infer DPGs for diagrams and study semantic interpretation and reasoning of diagrams in the context of diagram question answering. We devise an LSTM-based method for syntactic parsing of diagrams and introduce a DPG-based attention model for diagram question answering. We compile a new dataset of diagrams with exhaustive annotations of constituents and relationships for over 5,000 diagrams and 15,000 questions and answers. Our results show the significance of our models for syntactic parsing and question answering in diagrams using DPGs

    Lunar Lander Structural Design Studies at NASA Langley

    Get PDF
    The National Aeronautics and Space Administration is currently developing mission architectures, vehicle concepts and flight hardware to support the planned human return to the Moon. During Phase II of the 2006 Lunar Lander Preparatory Study, a team from the Langley Research Center was tasked with developing and refining two proposed Lander concepts. The Descent-Assisted, Split Habitat Lander concept uses a disposable braking stage to perform the lunar orbit insertion maneuver and most of the descent from lunar orbit to the surface. The second concept, the Cargo Star Horizontal Lander, carries ascent loads along its longitudinal axis, and is then rotated in flight so that its main engines (mounted perpendicular to the vehicle longitudinal axis) are correctly oriented for lunar orbit insertion and a horizontal landing. Both Landers have separate crew transport volumes and habitats for surface operations, and allow placement of large cargo elements very close to the lunar surface. As part of this study, lightweight, efficient structural configurations for these spacecraft were proposed and evaluated. Vehicle structural configurations were first developed, and preliminary structural sizing was then performed using finite element-based methods. Results of selected structural design and trade studies performed during this activity are presented and discussed

    Mars Tumbleweed: FY2003 Conceptual Design Assessment

    Get PDF
    NASA LaRC is studying concepts for a new type of Mars exploration vehicle that would be propelled by the wind. Known as the Mars Tumbleweed, it would derive mobility through use of the Martian surface winds. Tumbleweeds could conceivably travel greater distances, cover larger areas of the surface, and provide access to areas inaccessible by conventional vehicles. They would be lightweight and relatively inexpensive, allowing a multiple vehicle network to be deployed on a single mission. Tumbleweeds would be equipped with sensors for conducting science and serve as scouts searching broad areas to identify specific locations for follow-on investigation by other explorers. An extensive assessment of LaRC Tumbleweed concepts was conducted in FY03, including refinement of science mission scenarios, definition of supporting subsystems (structures, power, communications), testing in wind tunnels, and development of a dynamic simulation capability

    Multigenerational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior Health (MICEHAB): An Investigation of a Long Duration, Partial Gravity, Autonomous Rodent Colony

    Get PDF
    The path from Earth to Mars requires exploration missions to be increasingly Earth-independent as the foundation is laid for a sustained human presence in the following decades. NASA pioneering of Mars will expand the boundaries of human exploration, as a sustainable presence on the surface requires humans to successfully reproduce in a partial gravity environment independent from Earth intervention. Before significant investment is made in capabilities leading to such pioneering efforts, the challenges of multigenerational mammalian reproduction in a partial gravity environment need be investigated. The Multi-generational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior health is designed to study these challenges. The proposed concept is a conceptual, long duration, autonomous habitat designed to house rodents in a partial gravity environment with the goal of understanding the effects of partial gravity on mammalian reproduction over multiple generations and how to effectively design such a facility to operate autonomously while keeping the rodents healthy in order to achieve multiple generations. All systems are designed to feed forward directly to full-scale human missions to Mars. This paper presents the baseline design concept formulated after considering challenges in the mission and vehicle architectures such as: vehicle automation, automated crew health management/medical care, unique automated waste disposal and hygiene, handling of deceased crew members, reliable long-duration crew support systems, and radiation protection. This concept was selected from an architectural trade space considering the balance between mission science return and robotic and autonomy capabilities. The baseline design is described in detail including: transportation and facility operation constraints, artificial gravity system design, habitat design, and a full-scale mock-up demonstration of autonomous rodent care facilities. The proposed concept has the potential to integrate into existing mission architectures in order to achieve exploration objectives, and to demonstrate and mature common capabilities that enable a range of destinations and missions

    Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    Get PDF
    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration

    The Economic Gains to Colorado of Amendment 66

    Full text link
    corecore