8 research outputs found

    2004–2016 Wintertime Atmospheric Blocking Events over Western Siberia and Their Effect on Surface Temperature Anomalies

    No full text
    Western Siberia is a large area in Northern Eurasia, which lies between the Urals and the Yenisei River. The atmospheric blocking events are not a frequent phenomenon in this region. Nevertheless, they noticeably affect the weather and living conditions of people there. We have investigated 14 winter blocking events, identified over Western Siberia, over 2004–2016, and have studied their effect on the surface temperature in this region. We have compared each of the 14 blocking events to the corresponding surface temperature anomalies in the north and in the south of Western Siberia. As a result, the temperature anomalies were separated into two groups: (1) dipole, with a positive surface temperature anomaly (or close to the norm) in the north, and with a negative anomaly (or close to the norm) in the south, and (2) non-dipole. Ten events were attributed to Group 1, four events were referred to Group 2. Analyzing the potential temperature on the dynamic tropopause (advection characteristic) showed that the Group 1 events feature strong advection over the investigated territory. In the non-dipole situations from Group 2 Western Siberia are away from strong blocking events

    Wintertime Atmospheric Blocking Events over Western Siberia in the Period 2004–2016 and Their Influence on the Surface Temperature Anomalies

    No full text
    We study wintertime blocking events in 2004–2016 over Western Siberia (WS) and their influence on the surface temperature. The period 2004–2016 is very interesting for study because there has been an increase in the blocking frequency over WS beginning with 2004. We used data ECMWF ERA-Interim and blocking criterion proposed by Tibaldi and Molteni. We investigated blockings events with duration of 5 days or more for winter interval (1 November–31 March). We have chosen 15 blockings events. For each event we calculate surface temperature anomaly in the grid points for two sectors 60–90 E; 50–60 N (southern part of WS) and 60–90 E; 60–70 N (northern part of WS). To estimate advective transfer for studied events we analyzed the potential temperature on the dynamical tropopause. We showed that wintertime blocking events over WS lead to the surface temperature increase in the northern part of West Siberia and to the surface temperature decrease in the southern part of WS. This feature apparently due to warm air masses advection from south-west on the western periphery of the blocking ridge and arctic air masses intrusion to the southern part of the WS on the eastern periphery of this ridge

    2004–2016 Wintertime Atmospheric Blocking Events over Western Siberia and Their Effect on Surface Temperature Anomalies

    No full text
    Western Siberia is a large area in Northern Eurasia, which lies between the Urals and the Yenisei River. The atmospheric blocking events are not a frequent phenomenon in this region. Nevertheless, they noticeably affect the weather and living conditions of people there. We have investigated 14 winter blocking events, identified over Western Siberia, over 2004–2016, and have studied their effect on the surface temperature in this region. We have compared each of the 14 blocking events to the corresponding surface temperature anomalies in the north and in the south of Western Siberia. As a result, the temperature anomalies were separated into two groups: (1) dipole, with a positive surface temperature anomaly (or close to the norm) in the north, and with a negative anomaly (or close to the norm) in the south, and (2) non-dipole. Ten events were attributed to Group 1, four events were referred to Group 2. Analyzing the potential temperature on the dynamic tropopause (advection characteristic) showed that the Group 1 events feature strong advection over the investigated territory. In the non-dipole situations from Group 2 Western Siberia are away from strong blocking events

    Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: current status and future needs

    No full text
    International audienceHere, we briefly describe the station established by IAO SB RAS at Fonovaya Observatory to carry out continuous measurements of atmospheric composition and other parameters in West Siberia. Specifications of the instrumentation installed at the station, functioning modes of individual units comprising it, collection, transferring and storage of the measurement data are presented

    Integrated airborne investigation of the air composition over the Russian sector of the Arctic

    No full text
    International audienceThe change of the global climate is most pronounced in the Arctic, where the air temperature increases 2 to 3 times faster than the global average. This process is associated with an increase in the concentration of greenhouse gases in the atmosphere. There are publications predicting the sharp increase in methane emissions into the atmosphere due to permafrost thawing. Therefore, it is important to study how the air composition in the Arctic changes in the changing climate. In the Russian sector of the Arctic, the air composition was measured only in the surface atmospheric layer at the coastal stations or earlier at the drifting stations. Vertical distributions of gas constituents of the atmosphere and aerosol were determined only in a few small regions. That is why the integrated experiment was carried out to measure the composition of the troposphere in the entire Russian sector of the Arctic from on board the Optik Tu-134 aircraft laboratory in the period of ​​​​​​​4 to 17 September of 2020. The aircraft laboratory was equipped with contact and remote measurement facilities. The contact facilities were capable of measuring the concentrations of CO2, CH4, O3, CO, NOx​​​​​​​, and SO2, as well as the disperse composition of particles in the size range from 3 nm to 32 ”m, black carbon, and organic and inorganic components of atmospheric aerosol. The remote facilities were operated to measure the water transparency in the upper layer of the ocean, the chlorophyll content in water, and spectral characteristics of the underlying surface. The measured data have shown that the ocean continues absorbing CO2. This process is most intense over the Barents and Kara seas. The recorded methane concentration was increased over all the Arctic seas, reaching 2090 ppb in the near-water layer over the Kara Sea. The contents of other gas components and black carbon were close to the background level.In bioaerosol, bacteria predominated among the identified microorganisms. In most samples, they were represented by coccal forms, less often spore-forming and non-spore-bearing rod-shaped bacteria. No dependence of the representation of various bacterial genera on the height and the sampling site was revealed. The most turbid during the experiment was the upper layer of the Chukchi and Bering seas. The Barents Sea turned out to be the most transparent. The differences in extinction varied by more than a factor of 1.5. In all measurements, except for the Barents Sea, the tendency of an increase in chlorophyll fluorescence in more transparent waters was observed

    Integrated airborne investigation of the air composition over the Russian Sector of the Arctic

    No full text
    International audienceThe change of the global climate is most pronounced in the Arctic, where the air temperature increases two to three times faster than the global average. This process is associated with an increase in the concentration of greenhouse gases in the atmosphere. There are publications predicting the sharp increase of methane emissions into the atmosphere due to permafrost thawing. Therefore, it is important to study how the air composition in the Arctic changes in the changing climate. In the Russian sector of the Arctic, the air composition was measured only in the surface atmospheric layer at the coastal stations or earlier at the drifting stations. Vertical distributions of gas constituents of the atmosphere and aerosol were determined only in few small regions. That is why the integrated experiment was carried out to measure the composition of the troposphere in the entire Russian sector of the Arctic from onboard the Optik Tu-134 aircraft laboratory in the period of September 4 to 17 of 2020. The aircraft laboratory was equipped with contact and remote measurement facilities. The contact facilities were capable of measuring the concentrations of CO2, CH4, O3, CO, NOX, and SO2, as well as the disperse composition of particles in the size range from 3 nm to 32 ”m, black carbon, organic and inorganic components of atmospheric aerosol. The remote facilities were operated to measure the water transparency in the upper layer of the ocean, the chlorophyll content in water, and spectral characteristics of the underlying surface. The measured data have shown that the ocean continues absorbing СО2. This process is most intense over the Barents and Kara Seas. The recorded methan

    Hyperon signatures in the PANDA experiment at FAIR

    No full text
    We present a detailed simulation study of the signatures from the sequential decays of the triple-strange pbar p -> Ω+Ω- -> K+ΛbarK- Λ -> K+pbarπ+K-pπ- process in the PANDA central tracking system with focus on hit patterns and precise time measurement. We present a systematic approach for studying physics channels at the detector level and develop input criteria for tracking algorithms and trigger lines. Finally, we study the beam momentum dependence on the reconstruction efficiency for the PANDA detector
    corecore