47 research outputs found

    Interaction-tuned Anderson versus Mott localization

    Full text link
    Disorder or sufficiently strong interactions can render a metallic state unstable causing it to turn into an insulating one. Despite the fact that the interplay of these two routes to a vanishing conductivity has been a central research topic, a unifying picture has not emerged so far. Here, we establish that the two-dimensional Falicov-Kimball model, one of the simplest lattice models of strong electron correlation does allow for the study of this interplay. In particular, we show that this model at particle-hole symmetry possesses three distinct thermodynamic insulating phases and exhibits Anderson localization. The previously reported metallic phase is identified as a finite-size feature due to the presence of weak localization. We characterize these phases by their electronic density of states, staggered occupation, conductivity, and the generalized inverse participation ratio. The implications of our findings for other strongly correlated systems are discussed.Comment: 5 pages, 4 figure

    opendf - an implementation of the dual fermion method for strongly correlated systems

    Get PDF
    The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the \texttt{opendf} code, an open-source implementation of the dual fermion method applicable to fermionic single-orbital lattice models in dimensions D=1,2,3D=1,2,3 and 44. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.Comment: 7 pages, 6 figures, 28th Annual CSP Workshop proceeding

    Spreading of correlations in the Falicov-Kimball model

    Get PDF
    We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly

    Dynamics of Majorana-based qubits operated with an array of tunable gates

    Get PDF
    We study the dynamics of Majorana zero modes that are shuttled via local tuning of the electrochemical potential in a superconducting wire. By performing time-dependent simulations of microscopic lattice models, we show that diabatic corrections associated with the moving Majorana modes are quantitatively captured by a simple Landau-Zener description. We further simulate a Rabi-oscillation protocol in a specific qubit design with four Majorana zero modes in a single wire and quantify constraints on the timescales for performing qubit operations in this setup. Our simulations utilize a Majorana representation of the system, which greatly simplifies simulations of superconductors at the mean-field level.Comment: 12 pages, 8 figures. v2: minor corrections, updated reference
    corecore