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Abstract

The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this

paper, we present the opendf code, an open-source implementation of the dual fermion method applicable to fermionic single-

orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects

all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the

GNU public license version 2.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

Understanding the physics of complex correlated electron systems beyond simple approximations or exactly solv-

able limits is a long-standing goal of condensed matter physics. Towards this goal, the dynamical mean field theory

(DMFT) [1, 2, 3, 4, 5, 6] is a workhorse which provides numerically simulated results for the physics of such systems.

It establishes that, if correlations and interactions are assumed to be local, the (intractable) extended system can be

mapped self-consistently onto an Anderson impurity model, which can then be solved numerically.

The dynamical mean field approximation of locality is often precise enough that general material trends can be

reproduced. Nevertheless, cases where non-local correlations lead to behavior not captured by DMFT are known

[7, 8, 9, 10], and therefore methods that improve on this approximation are needed. The dual fermion method [11],

which perturbatively adds corrections to a DMFT starting point reintroduces momentum dependent correlations. If all

corrections are included, the method recovers the full momentum dependence of the original problem and becomes

numerically exact.

In this paper, we present opendf, an implementation of the ‘ladder series’ variant of the Dual Fermion method [12].

This variant is approximate, as neither vertices with more than four legs nor series of vertices beyond a single ladder
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are considered. Nevertheless, it has been shown to consistently improve on DMFT results [11, 13, 12, 14, 15, 16] and

capture critical properties of phase transitions [17].

Dual fermion calculations rely on a dynamical mean field input, which can be provided by one of the publicly

available open source software packages that implement the approximation, including ALPS (the Algorithms and

Libraries for Physics Simulations) [18], TRIQS (the Toolbox for Research on Interacting Quantum Systems) [19],

and iQIST [20]. This initial step requires the self-consistent solution of an interacting quantum many-body system

and the calculation of vertex functions [21, 22] and is computationally much more expensive than the summation of

the dual fermion diagrams.

The rest of this paper is organized as follows: Section 2 introduces the methodology. Section 3 describes distribu-

tion aspects, section 4 performance aspects, section 5 shows some examples, and section 6 will conclude.

2. Methodology

2.1. Prerequisites

We consider a general fermionic single-orbital lattice model with a Hamiltonian

H =
∑
kσ

(εk − μ)c†kσckσ +
∑

i

Hint[c†i , ci], (1)

written in mixed momentum, k, and real space, i, notation in terms of creation and annihilation operators (c†kσ and

ckσ respectively). The index σ labels the spin projection, εk is the lattice dispersion relation and k is the vector in the

reciprocal space. Hint is the local interaction for each site, i, on the lattice. No assumption is made within DF as to the

structure of Hint.

As a first step, which must be performed outside of this code, an approximate solution of the model is obtained from

a dynamical mean field calculation, for example provided by the ALPS code [18] with an appropriate impurity solver

[21]. It provides an estimate for the local Green’s function of the lattice problem as a solution of the Anderson impurity

model, embedded into a self-consistently determined hybridization. The imaginary time action of this “impurity

problem” reads

S A = −
∑
iω,σ

(iω + μ − Δωσ)c†ωσcωσ + S int, (2)

where S int =
∫ β

0
dτHint[c†i (τ), ci(τ)] is the interaction part of the action and Δωσ is a self-consistently determined

hybridization function. The DMFT impurity solver computes the one particle Green’s function gωσ = −〈cωσc†ωσ〉 of

the of the Anderson impurity model and the two particle vertex functions (i.e. the connected parts of two-particle

Green’s functions)

γσ1σ2σ3σ4

Ωωω′ =
(
〈cω,σ1

c†
Ω+ω,σ2

cω′+Ω,σ3
c†ω′,σ4

〉 − gωσ1
gω′σ3

δΩ,0δσ1,σ2
+ gωσ1

gω+Ω,σ2
δω,ω′δσ,σ3

)
. (3)

The following quantities are then provided as an input to the DF simulation:

• gω - the full Green’s function of the DMFT impurity problem (same values for both spin components)

• Δω - hybridization function of the DMFT impurity problem

• μ - chemical potential of the problem

• Two independent components of the impurity vertex function, γσ1σ2σ3σ4

Ωωω′ , from Eqn (3): γ↑↑↑↑
Ω,ω,ω′ ≡ γ↑↑Ω,ω,ω′ and

γ↑↓↓↑
Ω,ω,ω′ ≡ γ↑↓Ω,ω,ω′ .

The present version of the code considers only spin-symmetric solutions of fermionic spin s = 1/2 problems, and

does not describe symmetry-broken phases. We will omit the spin index σ in single particle quantities in what follows.
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2.2. Ladder dual fermion self-consistency loop

A precise derivation of the DF equations can be found in [23, 17]. Here we outline the equations solved within the

opendf code. The evaluation of the DF equations starts with the construction of the bare dual fermion propagator

G̃(0)
ω,k =

[
g−1
ω + Δω − εk

]−1 − gω, (4)

which represents a k-dependent correction to the impurity Green’s function. This Green’s function is used to construct

two-particle bubbles:

χ̃Ωω(q) = − T
ND

k

∑
k

G̃ω,kG̃ω+Ω,k+q. (5)

Here the integral over the Brilloin zone is replaced with a discrete summation with Nk points in each direction. The

impurity vertex functions are combined into density and magnetic channels (labeled d/m respectively) as:

γd/m
Ω,ω,ω′ = γ

↑↑
Ω,ω,ω′ ± γ↑↓Ω,ω,ω′ . (6)

The vertices for the respected channels from Eq. 6 and the bubbles from Eq. 5 are substituted into ladder equations:

Γ
d/m
Ω,ω,ω′ (q) = γd/m

Ω,ω,ω′ +
∑
ω′′
γd/m
Ω,ω,ω′′ χ̃Ω,ω′′ (q)Γd/m

Ω′′,ω′ (q). (7)

ΓΩ,ω,ω′ is called the fully dressed vertex function.

Evaluation of Eq. 7 is performed independently for each pair of bosonic frequencies Ω and transfer momenta q.

γΩ,ω,ω′ and ΓΩ,ω,ω′ (q) are represented as matrices in the space of fermionic Matsubara frequencies ω, ω′, and χ̃Ω,ω′′ (q)

is a diagonal matrix. In this matrix notation, Eq. 7 reads

(1̂ − γ̂χ̃)Γ̂ = γ̂. (8)

This equation is physically correct only when the maximum eigenvalue of γ̂χ̃ is smaller than one, i.e. all eigenvalues

of the matrix D̂ = 1̂ − γ̂χ̃ are positive. Eq. 8 is then solved and Γ is obtained. When the determinant of D̂ is negative

and a negative eigenvalue exists, the DF solution is outside of the convergence radius of the ladder approximation.

Nevertheless, given that the resulting solution is unique, one can extend this convergence radius by doing a low-order

iterative evaluation of Γ and checking if the inversion of Eq. 7 can be obtained on the next DF iteration.

Once the fully dressed vertex function ΓΩ,ω,ω′ is obtained, it is used in the Schwinger-Dyson equation to obtain the

dual self-energy Σ̃ω,k. The equation reads:

Σ̃ω,k =
T

2ND
k

∑
Ω,q

(
3

[
Γm
Ω,ω,ω(q) − 1

2
Γ

(2),m
Ω,ω,ω

(q)

]
+ Γd

Ω,ω,ω(q) − 1

2
Γ

(2),d
Ω,ω,ω

(q)

)
G̃ω,k+q, (9)

where Γ(2) = γ̂χ̃γ̂ indicates the second order (first iteration) correction from Eq. 7 to avoid diagrammatic double

counting.

The resulting dual self-energy is used to obtain the dual Green’s function from the Dyson equation:

G̃−1
ωk =

[
G(0
ωk

]−1 − Σ̃ωk (10)

The procedure is repeated until convergence of G̃ is achieved.

2.3. Resulting observables

The fully converged dual Green’s function G̃, self-energy Σ̃, vertices Γd/m determine the lattice correlators. Specif-

ically,
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• the lattice self-energy:

Σω,k =
Σ̃ω,k

1 − gωΣω,k
+ ΣDMFT

ω , (11)

where ΣDMFT
ω = iω + μ − Δω − g−1

ω .

• The lattice Green’s function

Gω,k = [Δω − εk]−1 + [Δω − εk]−1 g−1
ω G̃ω,kg−1

ω [Δω − εk]−1 . (12)

Eqs. 11 and 12 are related by a Dyson equation for G and Σ.

• The charge and spin susceptibilities

χch/sp(Ω, q) = −T
∑
ωk

GωkGω+Ωk+q +
∑
ω,ω′

LΩ,ω(q)Γd/m
Ω,ω,ω′ (q)LΩ,ω′ (q), (13)

LΩ,ω(q) = −T
∑

k

Gω,kGω+Ω,k+q, (14)

Gω,k = G̃ωk

G̃(0)
ω,k + gω

G̃(0)
ω,k

. (15)

3. Distribution

The dual fermion code is distributed as a C++ library with compiled executables hub df cubicDd, where D labels

the number of dimensions (D = 1, 2, 3, 4). We use the opensource gftools library [24] for algebraic operations with

single- and multi-particle Green’s functions and its interface to the ALPSCore libraries [25] for loading/saving hdf5

objects. The code and the documentation are available as Ref. [26].

4. Example I and performance analysis

As a first example and illustration of the performance of the code, we provide an example input generator for the

particle-hole symmetric Hubbard model at U 
 t (the “atomic limit”) . In this case the input quantities are given

analytically by:

gω =
1

2

[
1

iω − U/2
+

1

iω + U/2

]
, (16)

Δω = 2Dgω, (17)

γ↑↑
Ω,ω,ω′ =

βU2

4
(δω1,ω2

− δω1,ω4
)Λω1
Λω3
, (18)

γ↑↓
Ω,ω,ω′ = −U +

U3

8

ω2
1 + ω

2
2 + ω

2
3 + ω

2
4

ω2
1
ω2

2
ω2

3
ω2

4

+
3U5

16

1

ω1ω2ω3ω4

(19)

+
βU2

4

1

1 + exp(βU/2)
(2δω2,−ω3

+ δω1,ω2
)Λω2
Λω3

− βU
2

4

1

1 + exp(−βU/2)
(2δω1,ω4

+ δω1,ω2
)Λω1
Λω3
,

where Λω = 1 + U2/(4ω2) and ω1 = ω,ω2 = ω + Ω, ω3 = ω
′ + Ω, ω4 = ω

′ is used to simplify the notation. The

corresponding program is provided with the code.

The numerical solution of dual fermion equations requires introducing several control parameters. In particular, the

vertex function γΩ,ω,ω′ is sampled on a grid with a cutoff NΩ in bosonic and Nω fermionic frequencies and the Brilloin

zone is sampled on a finite grid of size Nk, giving a total volume of the system of ND
k . We analyze the convergence
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of the code upon tuning NΩ, Nω and Nk and the computational effort below. Eqs. 16, 17, 18, 19 are used to provide

the input to the code and the system is evaluated in 2 dimensions, at U = 20, μ = U
2

, β = 1. We choose the value of

g = G̃iπ/β,0,0 to control the convergence. We then plot the normalized difference

δg =

∣∣∣∣∣∣
gNx − gNx→∞

gNx→∞

∣∣∣∣∣∣ (20)

as a function of control parameter Nx, with x = {Ω, ω, k}, and extrapolate Nx → ∞ to evaluate the error. For the most

expensive point shown here, the run-time of the simulation was ≈ 2 min on a laptop.

Fig. 1. (a) Execution time of the dual fermion calculation for the Hubbard model in 2 dimensions with “atomic limit” input at U = 20, β = 1 as

a function of the number of bosonic frequencies NΩ at Nω = 48, Nk = 16; (b) Systematic error δg of the dual fermion Green’s function G̃iω,k at

iω = iπ/β, k = (0, 0) as a function of bosonic frequencies NΩ, plotted on a logarithmic scale.

Fig. 1 shows the performance of the opendf code upon the change of the total number of bosonic frequencies NΩ
in the vertex γΩ for a fixed number of fermionic frequencies Nω = 48 for a 16 × 16 k-space grid. The computational

effort, indicated by the time to convergence in Fig. 1(a), grows linearly in NΩ. The error δg, as defined in Eqn. 20 and

shown in frame (b), is of the order of a percent and decreases with a power law.

Fig. 2. (a) Execution time of the dual fermion calculation for the Hubbard model in 2 dimensions with “atomic limit” input at U = 20, β = 1 as a

function of the number of fermionic frequencies Nω at NΩ = 3, Nk = 8; (b) Error δg of Giω,k at iω = iπ/β, k = (0, 0) as a function of 1/Nω, for the

same parameters.

We analyze the performance of the code with respect to the change of the total number of fermionic frequencies

Nω in Fig. 2. In this benchmark we fix the number of bosonic frequencies, NΩ = 3, and perform the calculation on a

8 × 8 k-space grid. The computational expense seen in Fig. 2(a) grows almost quadratically, while the relative error

shown in Fig. 2(b) is an order of magnitude smaller, as compared to the variation in NΩ shown in Fig.1(b) and reduces

as a power-law with an increase of Nω.
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Fig. 3. (a) Execution time of the dual fermion calculation for the Hubbard model in 2 dimensions with “atomic limit” input at U = 20, β = 1

as a function volume ND
k at NΩ = 3, Nω = 48. (b) Systematic error δg of Giω,k at iω = iπ/β, k = (0, 0) as a function of the volume at the same

parameters.

The performance of the code with respect to the change of number of k-space samples within the Brilloin zone ND
k ,

is plotted on Fig. 3. The computational effort (frame (a)) scales linearly with the volume ND
k of the system and shows

fast convergence of the relative error δg (frame (b)).

5. Example II - Hubbard model, 2 dimensions

-3

-2

-1

0

1

2

3

R
eΣ

(k
, i

ω
0
)

DMFT
DCA - 72 site
2D Hubbard U=8

(0,0) (π,0) (π,π) (0,0)

β=0.5

Fig. 4. Momentum dependence of the real part of the lower Matsubara frequency of the lattice self-energy of the particle-hole symmetric Hubbard

model in 2 dimensions, as obtained by the opendf calculation at U/t = 8, β = 0.5 along the (kx, ky) = (0, 0) → (π, 0) → (π, π) → (0, 0) path (red

points). Shown also is the DMFT value (as a dashed line) and the comparison data from the 72-site Dynamical Cluster Approximation calculation

(solid blue line).

We provide the practical illustration of the method for the Hubbard model in D = 2 dimensions. We show the

k-dependence of the real part of the lattice self-energy Σ(k, iωn) at iωn = iω0 ≡ iπ/β in Fig. 4 for the case of particle-

hole symmetry at U/t = 8 and compare it with available data from the Dynamical Cluster Approximation [8]. The

impurity model, solved using the ALPS DMFT [27] package with a CT-AUX solver [22], was used as an input. The

DMFT self-energy is momentum-independent, ReΣDMFT
ωk = 0, and is plotted with a dashed line. Taking into account
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Fig. 5. χch (left panel) and χsp (right), the static spin and charge susceptibilities, at Ω = 0 as a function of momenta qx and qy as obtained by the

opendf calculation for β = 0.5, U/t = 8.

the spatially dependent corrections by the dual fermions leads to a correct momentum-dependence of the self-energy,

matching in this case the DCA result. A detailed comparison between multiple methods will be discussed elsewhere

[28].

We illustrate the susceptibility in Fig. 5. Plotted are the static spin- and charge- susceptibilities at U/t = 8 for the

particle-hole symmetric case. The spin susceptibility, peaked at (π, π) due to antiferromagnetic fluctuations is much

larger than the charge one.

6. Conclusion

In this paper we have introduced an open source implementation of the dual fermion method, the opendf project. It

solves the dual fermion self consistency equations and computes non-local corrections to the local solutions provided

by DMFT. opendf can be used to augment DMFT computations with two-particle quantities and add momentum

dependence to DMFT observables.

Future development of the code is anticipated. Further releases will include extensions to additional diagrams,

broken-symmetry phases and multi-orbital systems.
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