16 research outputs found

    Detection of satellite remnants in the Galactic Halo with Gaia III. Detection limits for Ultra Faint Dwarf Galaxies

    Get PDF
    We present a method to identify Ultra Faint Dwarf Galaxy (UFDG) candidates in the halo of the Milky Way using the future Gaia catalogue and we explore its detection limits and completeness. The method is based on the Wavelet Transform and searches for over-densities in the combined space of sky coordinates and proper motions, using kinematics in the search for the first time. We test the method with a Gaia mock catalogue that has the Gaia Universe Model Snapshot (GUMS) as a background, and use a library of around 30 000 UFDGs simulated as Plummer spheres with a single stellar population. For the UFDGs we use a wide range of structural and orbital parameters that go beyond the range spanned by real systems, where some UFDGs may remain undetected. We characterize the detection limits as function of the number of observable stars by Gaia in the UFDGs with respect to that of the background and their apparent sizes in the sky and proper motion planes. We find that the addition of proper motions in the search improves considerably the detections compared to a photometric survey at the same magnitude limit. Our experiments suggest that Gaia will be able to detect UFDGs that are similar to some of the known UFDGs even if the limit of Gaia is around 2 magnitudes brighter than that of SDSS, with the advantage of having a full-sky catalogue. We also see that Gaia could even find some UFDGs that have lower surface brightness than the SDSS limit.Comment: Accepted for publication in MNRA

    The Universe is Here

    No full text
    Astronomy is a science devoted to the study of what existed, exists and will exist, from the most elemental particle to the most massive and powerful galaxy one observes. The study of the universe is not only meant to be to achieve an important understanding about it, but also in other fields of science and technology. The most important contribution from astronomy is perhaps social: it fascinates millions of people along the globe. The history of astronomy carries along the very history of humankind

    The universe is here

    No full text

    The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia

    Get PDF
    We use self-consistent numerical simulations of the evolution and disruption of the Sun's birth cluster in the Milky Way potential to investigate the present-day phase-space distribution of the Sun's siblings. The simulations include the gravitational N-body forces within the cluster and the effects of stellar evolution on the cluster population. In addition, the gravitational forces due to the Milky Way potential are accounted for in a self-consistent manner. Our aim is to understand how the astrometric and radial velocity data from the Gaia mission can be used to pre-select solar sibling candidates. We vary the initial conditions of the Sun's birth cluster, as well as the parameters of the Galactic potential. In particular, we use different configurations and strengths of the bar and spiral arms. We show that the disruption time-scales of the cluster are insensitive to the details of the non-axisymmetric components of the Milky Way model and we make predictions, averaged over the different simulated possibilities, about the number of solar siblings that should appear in surveys such as Gaia or GALAH. We find a large variety of present-day phase-space distributions of solar siblings, which depend on the cluster initial conditions and the Milky Way model parameters. We show that nevertheless robust predictions can be made about the location of the solar siblings in the space of parallaxes (ϖ), proper motions (ÎŒ) and radial velocities (Vr). By calculating the ratio of the number of simulated solar siblings to that of the number of stars in a model Galactic disc, we find that this ratio is above 0.5 in the region given by: ϖ ≄ 5 mas, 4 ≀ ÎŒ ≀ 6 mas yr−1, and −2 ≀ Vr ≀ 0 km s−1. Selecting stars from this region should increase the probability of success in identifying solar siblings through follow-up observations. However the proposed pre-selection criterion is sensitive to our assumptions, in particular about the Galactic potential. Using a more realistic potential (e.g. including transient spiral structure and molecular clouds) would make the pre-selection of solar sibling candidates based on astrometric and radial velocity data very inefficient. This reinforces the need for large-scale surveys to determine precise astrophysical properties of stars, in particular their ages and chemical abundances, if we want to identify the solar family

    The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia

    No full text
    We use self-consistent numerical simulations of the evolution and disruption of the Sun's birth cluster in the Milky Way potential to investigate the present-day phase-space distribution of the Sun's siblings. The simulations include the gravitational N-body forces within the cluster and the effects of stellar evolution on the cluster population. In addition, the gravitational forces due to the Milky Way potential are accounted for in a self-consistent manner. Our aim is to understand how the astrometric and radial velocity data from the Gaia mission can be used to pre-select solar sibling candidates. We vary the initial conditions of the Sun's birth cluster, as well as the parameters of the Galactic potential. In particular, we use different configurations and strengths of the bar and spiral arms. We show that the disruption time-scales of the cluster are insensitive to the details of the non-axisymmetric components of the Milky Way model and we make predictions, averaged over the different simulated possibilities, about the number of solar siblings that should appear in surveys such as Gaia or GALAH. We find a large variety of present-day phase-space distributions of solar siblings, which depend on the cluster initial conditions and the Milky Way model parameters. We show that nevertheless robust predictions can be made about the location of the solar siblings in the space of parallaxes (ϖ), proper motions (ÎŒ) and radial velocities (Vr). By calculating the ratio of the number of simulated solar siblings to that of the number of stars in a model Galactic disc, we find that this ratio is above 0.5 in the region given by: ϖ ≄ 5 mas, 4 ≀ ÎŒ ≀ 6 mas yr−1, and −2 ≀ Vr ≀ 0 km s−1. Selecting stars from this region should increase the probability of success in identifying solar siblings through follow-up observations. However the proposed pre-selection criterion is sensitive to our assumptions, in particular about the Galactic potential. Using a more realistic potential (e.g. including transient spiral structure and molecular clouds) would make the pre-selection of solar sibling candidates based on astrometric and radial velocity data very inefficient. This reinforces the need for large-scale surveys to determine precise astrophysical properties of stars, in particular their ages and chemical abundances, if we want to identify the solar family

    The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia

    No full text
    We use self-consistent numerical simulations of the evolution and disruption of the Sun's birth cluster in the Milky Way potential to investigate the present-day phase-space distribution of the Sun's siblings. The simulations include the gravitational N-body forces within the cluster and the effects of stellar evolution on the cluster population. In addition, the gravitational forces due to the Milky Way potential are accounted for in a self-consistent manner. Our aim is to understand how the astrometric and radial velocity data from the Gaia mission can be used to pre-select solar sibling candidates. We vary the initial conditions of the Sun's birth cluster, as well as the parameters of the Galactic potential. In particular, we use different configurations and strengths of the bar and spiral arms. We show that the disruption time-scales of the cluster are insensitive to the details of the non-axisymmetric components of the Milky Way model and we make predictions, averaged over the different simulated possibilities, about the number of solar siblings that should appear in surveys such as Gaia or GALAH. We find a large variety of present-day phase-space distributions of solar siblings, which depend on the cluster initial conditions and the Milky Way model parameters. We show that nevertheless robust predictions can be made about the location of the solar siblings in the space of parallaxes (ϖ), proper motions (ÎŒ) and radial velocities (Vr). By calculating the ratio of the number of simulated solar siblings to that of the number of stars in a model Galactic disc, we find that this ratio is above 0.5 in the region given by: ϖ ≄ 5 mas, 4 ≀ ÎŒ ≀ 6 mas yr−1, and −2 ≀ Vr ≀ 0 km s−1. Selecting stars from this region should increase the probability of success in identifying solar siblings through follow-up observations. However the proposed pre-selection criterion is sensitive to our assumptions, in particular about the Galactic potential. Using a more realistic potential (e.g. including transient spiral structure and molecular clouds) would make the pre-selection of solar sibling candidates based on astrometric and radial velocity data very inefficient. This reinforces the need for large-scale surveys to determine precise astrophysical properties of stars, in particular their ages and chemical abundances, if we want to identify the solar family

    Gaia Data Release 2: Mapping the Milky Way disc kinematics

    No full text
    Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS=12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes and precise Galactic cylindrical velocities. From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from ∌5 kpc to ∌13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 millionsolar neighbourhood stars (r<200 pc), with median velocity uncertainties of 0.4 km s−1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U−V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential

    Gaia Data Release 2: Mapping the Milky Way disc kinematics

    No full text
    Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS=12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes and precise Galactic cylindrical velocities. From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from ∌5 kpc to ∌13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 millionsolar neighbourhood stars (r<200 pc), with median velocity uncertainties of 0.4 km s−1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U−V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential

    Gaia Data Release 2, Variable stars in the colour-absolute magnitude diagram

    No full text
    Context: The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G<21 mag. Aims: We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods: We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce 'motions'. To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results: Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions: Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars

    Gaia Data Release 2: Summary of the contents and survey properties

    No full text
    Context. We present the second Gaiadata release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims. A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods. The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results. Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions. Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy
    corecore