20,896 research outputs found

    Development of e-SIWES Portal: A Web based Platform for Student Industrial Work Experience Scheme (SIWES) Management

    Get PDF
    We developed the e-SIWES portal in order to enhance the manual task of carrying out SIWES activities such as registration, dissemination of information, filling of log book for students’ day-to-day activities and supervision/assessment by lecturers and industry based supervisors. The portal is web-based and allows all tasks to be carried out using the personal computer and the Internet. We digitized the SIWES logbook and assessment forms for filling by students and grading by the supervisors electronically. This will allow supervisors to be assigned immediately the students commence their industrial training and facilitate their monitoring in real-time. With the e-SIWES portal, important messages can be broadcast to all students at once and on a prompt and regular basis

    Courthouse design principles to dignify spaces for indigenous users: Preliminary observations

    Get PDF
    Historically, Australian court architecture layout, design and details are intimately tied to the physical aspects of British imperial institutions. Displaying the visual features of the Empire's institutions has the effect of alienating Indigenous people within courts. This is compounded by design that is oblivious to the needs of Indigenous users and consequently places these users in situations that threaten their privacy, safety and wellbeing. This article contends that architectural design that seeks to accommodate Indigenous cultural and socio-spatial needs brings into sharp relief the barriers and harms otherwise confronting Indigenous people in courts. This article discusses three court complexes designed in collaboration with Indigenous communities to accommodate Indigenous connections to the environment surrounding the courthouse and to enhance access to justice. Indigenous collaborations in the design of the Indigenous-inclusive court complexes at Port Augusta (South Australia), Kalgoorlie and Kununurra (Western Australia) produced spatially distinct courthouses that eschew some historical court design principles and attempt to introduce features relevant to local Indigenous nations. This illustration essay discusses the emergence of Indigenous design principles that may inform courthouse redesign, the application of some of these principles in new courthouse designs and the need for local Indigenous oversight in the design processes. It provides a framework for further research into how Indigenous architectural collaborations in courthouse designs may promote safer and fairer environments for Indigenous court users. It also raises some potential disjuncture between court design and use of court space that may undermine the vision embedded in cultural design principles

    The 21cm angular-power spectrum from the dark ages

    Get PDF
    At redshifts z >~ 30 neutral hydrogen gas absorbs CMB radiation at the 21cm spin-flip frequency. In principle this is observable and a high-precision probe of cosmology. We calculate the linear-theory angular power spectrum of this signal and cross-correlation between redshifts on scales much larger than the line width. In addition to the well known redshift-distortion and density perturbation sources a full linear analysis gives additional contributions to the power spectrum. On small scales there is a percent-level linear effect due to perturbations in the 21cm optical depth, and perturbed recombination modifies the gas temperature perturbation evolution (and hence spin temperature and 21cm power spectrum). On large scales there are several post-Newtonian and velocity effects; although negligible on small scales, these additional terms can be significant at l <~ 100 and can be non-zero even when there is no background signal. We also discuss the linear effect of reionization re-scattering, which damps the entire spectrum and gives a very small polarization signal on large scales. On small scales we also model the significant non-linear effects of evolution and gravitational lensing. We include full results for numerical calculation and also various approximate analytic results for the power spectrum and evolution of small scale perturbations.Comment: 29 pages; significant extensions including: self-absorption terms (i.e. change to background radiation due to 21cm absorption); ionization fraction perturbations; estimates of non-linear effects; approximate analytic results; results for sharp redshift window functions. Code available at http://camb.info/sources

    Photo-response of the conductivity in functionalized pentacene compounds

    Full text link
    We report the first investigation of the photo-response of the conductivity of a new class of organic semiconductors based on functionalized pentacene. These materials form high quality single crystals that exhibit a thermally activated resistivity. Unlike pure pentacene, the functionalized derivatives are readily soluble in acetone, and can be evaporated or spin-cast as thin films for potential device applications. The electrical conductivity of the single crystal materials is noticeably sensitive to ambient light changes. The purpose, therefore, of the present study, is to determine the nature of the photo-response in terms of carrier activation vs. heating effects, and also to measure the dependence of the photo-response on photon energy. We describe a new method, involving the temperature dependent photo-response, which allows an unambiguous identification of the signature of heating effects in materials with a thermally activated conductivity. We find strong evidence that the photo-response in the materials investigated is predominantly a highly localized heating mechanism. Wavelength dependent studies of the photo-response reveal resonant features and cut-offs that indicate the photon energy absorption is related to the electronic structure of the material.Comment: Preprint: 18 pages total,7 figure

    Economic Analysis of Children's Surgical Care in Low- and Middle-Income Countries: A Systematic Review and Analysis.

    Get PDF
    BackgroundUnderstanding the economic value of health interventions is essential for policy makers to make informed resource allocation decisions. The objective of this systematic review was to summarize available information on the economic impact of children's surgical care in low- and middle-income countries (LMICs).MethodsWe searched MEDLINE (Pubmed), Embase, and Web of Science for relevant articles published between Jan. 1996 and Jan. 2015. We summarized reported cost information for individual interventions by country, including all costs, disability weights, health outcome measurements (most commonly disability-adjusted life years [DALYs] averted) and cost-effectiveness ratios (CERs). We calculated median CER as well as societal economic benefits (using a human capital approach) by procedure group across all studies. The methodological quality of each article was assessed using the Drummond checklist and the overall quality of evidence was summarized using a scale adapted from the Agency for Healthcare Research and Quality.FindingsWe identified 86 articles that met inclusion criteria, spanning 36 groups of surgical interventions. The procedure group with the lowest median CER was inguinal hernia repair (15/DALY).Theproceduregroupwiththehighestmediansocietaleconomicbenefitwasneurosurgicalprocedures(15/DALY). The procedure group with the highest median societal economic benefit was neurosurgical procedures (58,977). We found a wide range of study quality, with only 35% of studies having a Drummond score ≥ 7.InterpretationOur findings show that many areas of children's surgical care are extremely cost-effective in LMICs, provide substantial societal benefits, and are an appropriate target for enhanced investment. Several areas, including inguinal hernia repair, trichiasis surgery, cleft lip and palate repair, circumcision, congenital heart surgery and orthopedic procedures, should be considered "Essential Pediatric Surgical Procedures" as they offer considerable economic value. However, there are major gaps in existing research quality and methodology which limit our current understanding of the economic value of surgical care

    vbyCaHbeta CCD Photometry of Clusters. VI. The Metal-Deficient Open Cluster NGC 2420

    Full text link
    CCD photometry on the intermediate-band vbyCaHbeta system is presented for the metal-deficient open cluster, NGC 2420. Restricting the data to probable single members of the cluster using the CMD and the photometric indices alone generates a sample of 106 stars at the cluster turnoff. The average E(b-y) = 0.03 +/- 0.003 (s.e.m.) or E(B-V) = 0.050 +/- 0.004 (s.e.m.), where the errors refer to internal errors alone. With this reddening, [Fe/H] is derived from both m1 and hk, using b-y and Hbeta as the temperature index. The agreement among the four approaches is reasonable, leading to a final weighted average of [Fe/H] = -0.37 +/- 0.05 (s.e.m.) for the cluster, on a scale where the Hyades has [Fe/H] = +0.12. When combined with the abundances from DDO photometry and from recalibrated low-resolution spectroscopy, the mean metallicity becomes [Fe/H] = -0.32 +/- 0.03. It is also demonstrated that the average cluster abundances based upon either DDO data or low-resolution spectroscopy are consistently reliable to 0.05 dex or better, contrary to published attempts to establish an open cluster metallicity scale using simplistic offset corrections among different surveys.Comment: scheduled for Jan. 2006 AJ; 33 pages, latex, includes 7 figures and 2 table

    Super-Rough Glassy Phase of the Random Field XY Model in Two Dimensions

    Full text link
    We study both analytically, using the renormalization group (RG) to two loop order, and numerically, using an exact polynomial algorithm, the disorder-induced glass phase of the two-dimensional XY model with quenched random symmetry-breaking fields and without vortices. In the super-rough glassy phase, i.e. below the critical temperature TcT_c, the disorder and thermally averaged correlation function B(r)B(r) of the phase field θ(x)\theta(x), B(r)=ˉB(r) = \bar{} behaves, for rar \gg a, as B(r)A(τ)ln2(r/a)B(r) \simeq A(\tau) \ln^2 (r/a) where r=rr = |r| and aa is a microscopic length scale. We derive the RG equations up to cubic order in τ=(TcT)/Tc\tau = (T_c-T)/T_c and predict the universal amplitude A(τ)=2τ22τ3+O(τ4){A}(\tau) = 2\tau^2-2\tau^3 + {\cal O}(\tau^4). The universality of A(τ)A(\tau) results from nontrivial cancellations between nonuniversal constants of RG equations. Using an exact polynomial algorithm on an equivalent dimer version of the model we compute A(τ){A}(\tau) numerically and obtain a remarkable agreement with our analytical prediction, up to τ0.5\tau \approx 0.5.Comment: 5 pages, 3 figure
    corecore