666 research outputs found

    Phase Transitions in Zeolitic Imidazolate Framework 7: The Importance of Framework Flexibility and Guest-Induced Instability

    Get PDF
    A study of the phase transitions in ZIF-7 (zeolitic imidazolate frameworks- (Zn(PhIm)2, PhIm = benzimidazolate)) as a function of guest occupancy and temperature was reported. Raman spectra of an as-synthesized sample were collected in air between 297 and 421 K. The major contributions of the spectra come from the vibrational modes of the benzimidazolate ligand. Upon heating, most of the Raman bands remain similar and keep the same frequencies until 357 K, indicating that the structure of ZIF-7 seems to be stable in this temperature range. Above 357 K, strong modifications are observed in the regions corresponding to the lattice modes. The formation of ZIF-7-II is attributed to the loss of dimethylformamide (DMF) solvent molecules from the ZIF-7-I framework. This can be confirmed by the differential scanning calorimetry and thermogravimetric analysis traces of ZIF-7-I. The highly-distorted and locally-strained nature of ZIF-7-II leads to its poor crystallinity, reflected by X-ray powder diffraction and scanning electron microscope

    Randomized Phase II Study Comparing Prophylactic Cranial Irradiation Alone to Prophylactic Cranial Irradiation and Consolidative Extracranial Irradiation for Extensive-Disease Small Cell Lung Cancer (ED SCLC): NRG Oncology RTOG 0937

    Get PDF
    Introduction—RTOG-0937 is a randomized phase-II trial evaluating 1-year OS with PCI or PCI plus consolidative radiation therapy (cRT) to intra-thoracic disease and extracranial metastases for ED-SCLC. Methods—Patients with 1–4 extracranial metastases were eligible after CR or PR to chemotherapy. Randomization was to PCI or PCI+cRT to the thorax and metastases. Original stratification included PR vs CR after chemotherapy and 1 vs 2–4 metastases; age \u3c 65 vs ≥ 65 was added after an observed imbalance. PCI was 25GY/10 fractions. cRT was 45GY/15 fractions. To detect an OS improvement from 30% to 45% with a 34% hazard reduction (HR=0·66) under a 0.1 type-1 error (1-sided) and 80% power, 154 patients were required. Results—Ninety-seven patients were randomized between March, 2010 and February, 2015. Eleven patients were ineligible (nine PCI, two PCI+cRT), leaving 42 randomized to PCI and 44 to PCI+cRT. At planned interim analysis the study crossed the futility boundary for OS and was closed prior to meeting accrual target. Median follow-up was 9 months. One-year OS was not different between the groups: 60.1% [95% CI: 41.2–74.7%] for PCI and 50.8% [95% CI:34.0–65.3%] for PCI+cRT (p=0.21). Three and 12-month rates of progression were 53.3% and 79.6% for PCI, and 14.5% and 75% for PCI+cRT. Time to progression favored PCI+cRT, HR=0.53 (95% CI: 0.32–0.87, p=0.01). One-patient in each arm had Grade-4 therapy related toxicity and one had Grade-5 therapy related pneumonitis with PCI+cRT. Conclusions—OS exceeded predictions for both arms. Consolidative RT delayed progression but did not improve 1-year OS

    Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    Get PDF
    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.Comment: 50 pages, 18 figures, 3 tables, author's version of the paper published in Natur

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition\ua0to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow

    Experimental progress in positronium laser physics

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore