56 research outputs found

    Sorting by Prefix Block-Interchanges

    Get PDF
    We initiate the study of sorting permutations using prefix block-interchanges, which exchange any prefix of a permutation with another non-intersecting interval. The goal is to transform a given permutation into the identity permutation using as few such operations as possible. We give a 2-approximation algorithm for this problem, show how to obtain improved lower and upper bounds on the corresponding distance, and determine the largest possible value for that distance

    Lower bounding edit distances between permutations

    Get PDF
    International audienceA number of fields, including the study of genome rearrangements and the design of interconnection networks, deal with the connected problems of sorting permutations in "as few moves as possible", using a given set of allowed operations, or computing the number of moves the sorting process requires, often referred to as the distance of the permutation. These operations often act on just one or two segments of the permutation, e.g. by reversing one segment or exchanging two segments. The cycle graph of the permutation to sort is a fundamental tool in the theory of genome rearrangements, and has proved useful in settling the complexity of many variants of the above problems. In this paper, we present an algebraic reinterpretation of the cycle graph of a permutation π as an even permutation π, and show how to reformulate our sorting problems in terms of particular factorisations of the latter permutation. Using our framework, we recover known results in a simple and unified way, and obtain a new lower bound on the prefix transposition distance (where a prefix transposition displaces the initial segment of a permutation), which is shown to outperform previous results. Moreover, we use our approach to improve the best known lower bound on the prefix transposition diameter from 2n/3 to ⌊3n/4⌋, and investigate a few relations between some statistics on π and π

    Merging partially labelled trees: hardness and a declarative programming solution

    Get PDF
    International audienceIntraspecific studies often make use of haplotype networks instead of gene genealogies to represent the evolution of a set of genes. Cassens et al. proposed one such network reconstruction method, based on the global maximum parsimony principle, which was later recast by the first author of the present work as the problem of finding a minimum common supergraph of a set of t partially labelled trees. Although algorithms were proposed for solving the problem on two graphs, the complexity of the general problem remains unknown. In this paper, we show that the corresponding decision problem is NP-complete for t = 3. We then propose a declarative programming approach to solving the problem to optimality in practice, as well as a heuristic approach, both based on the IDP system, and assess the performance of both methods on randomly generated data

    Decomposing Cubic Graphs into Connected Subgraphs of Size Three

    Get PDF
    Let S={K1,3,K3,P4}S=\{K_{1,3},K_3,P_4\} be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph GG into graphs taken from any non-empty S′⊆SS'\subseteq S. The problem is known to be NP-complete for any possible choice of S′S' in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of S′S'. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of S′S'-decomposable cubic graphs in some cases.Comment: to appear in the proceedings of COCOON 201

    The distribution of cycles in breakpoint graphs of signed permutations

    Get PDF
    Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre, who enumerated unsigned permutations whose breakpoint graph contains kk cycles, to signed permutations, and prove explicit formulas for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also compare these distributions to those of several well-studied distances, emphasising the cases where approximations obtained in this way stand out. Finally, we show how our results can be used to derive simpler proofs of other previously known results

    Differential calculus in Hilbert spaces /

    Get PDF

    Polynomial-time sortable stacks of burnt pancakes

    Get PDF
    Pancake flipping, a famous open problem in computer science, can be formalised as the problem of sorting a permutation of positive integers using as few prefix reversals as possible. In that context, a prefix reversal of length k reverses the order of the first k elements of the permutation. The burnt variant of pancake flipping involves permutations of signed integers, and reversals in that case not only reverse the order of elements but also invert their signs. Although three decades have now passed since the first works on these problems, neither their computational complexity nor the maximal number of prefix reversals needed to sort a permutation is yet known. In this work, we prove a new lower bound for sorting burnt pancakes, and show that an important class of permutations, known as "simple permutations", can be optimally sorted in polynomial time.Comment: Accepted pending minor revisio

    Merging Partially Labelled Trees: Hardness and a Declarative Programming Solution

    Full text link

    Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time

    Get PDF
    International audienceA phylogenetic network is a rooted acyclic digraph whose leaves are labeled with a set of taxa. The tree containment problem is a fundamental problem arising from model validation in the study of phylogenetic networks. It asks to determine whether or not a given network displays a given phylogenetic tree over the same leaf set. It is known to be NP-complete in general. Whether or not it remains NP-complete for stable networks is an open problem. We make progress towards answering that question by presenting a quadratic time algorithm to solve the tree containment problem for a new class of networks that we call genetically stable networks, which include tree-child networks and comprise a subclass of stable networks
    • …
    corecore