4,887 research outputs found

    CFD Simulation of Anaerobic Granular Sludge Reactors: A Review

    Get PDF
    Anaerobic digestion processes can generate renewable energy in the form of biogas while treating organic wastewater. The generation of biogas within anaerobic digestion systems is directly linked to the mixing conditions inside the reactors. In high-rate reactors such as the up-flow anaerobic sludge blanket (UASB) reactor, the expanded granular sludge bed (EGSB) reactor and the internal circulation (IC) reactor, the hydrodynamic behaviour will depend on the interactions between the wastewater, the biogas, and the biomass granules. Over the past few years, various researchers have used computational fluid dynamics (CFD) to study the hydrodynamic behaviour in these types of reactors. This review aims to present and critically discuss the state of the art in the use of CFD applied to anaerobic granular sludge reactors (AGSRs). It briefly introduces and discusses the various aspects of modelling. It also reviews the various papers which used CFD to model these reactors and critically analyses the models used for the simulations in terms of general approaches and single-phase vs multiphase studies. The methods used in the validation of the CFD models are also described and discussed. Based on the findings, the challenges and future perspectives for the CFD modelling of AGSRs are discussed and gaps in the knowledge are identified

    Development & Validation of a PIV System for Obtaining Data from a UASB Reactor

    Get PDF
    Anaerobic digestion processes can generate energy in the form of biogas while treating organic wastewater. The efficiency of the treatment, and thus the generation of biogas, is closely linked to the type and design of the reactor, and the technology used. Granular anaerobic digestion technology offers advantages such as a higher loading rate and reduction of the space needed. However, the hydrodynamics inside this type of reactor can be complex due to the presence of solids (granules) and gas (biogas) phases along with the liquid phase (wastewater). This is one of the reasons why the study and optimization of reactors using bench-scale reactors can lead to inaccurate results. A validated computational model would lead to the possibility of performing optimization studies using simulation; however, the validation of these computational models cannot be performed using analytical solutions due to their complexity. In this context, a particle image velocimetry (PIV) experimental setup was validated as part of this work, using computational fluid dynamics (CFD) simulations and data from literature. The experimental results obtained were compared with CFD results from six different models, each using a different turbulence model. The current setup was considered validated, allowing it to be used in the future for obtaining experimental data for the validation of a CFD model of an up-flow anaerobic sludge blanket reactor (UASB)

    An overview on the Irish Breweries and distilleries potential for generating bioenergy through the anaerobic digestion of the wastewater

    Get PDF
    This work presents an overview on the potential for generating bioenergy through the anaerobic digestion of the Irish breweries and whiskey distilleries effluents. The results showed that it would be possible to generate 28,210,958 Nm3/year of biogas or 154,846 MWh of thermal heat with 110,715 tonnes of CO2 savings in a year. The electricity generation potential and CO2 savings were also calculated. It was possible to conclude that the anaerobic digestion of the wastewater from the brewery and distillery industries stand out as a feasible option to increase the share of renewable energies in Ireland

    Synthesis of dibenzylamino-1-methylcyclohexanol and dibenzylamino-1-trifluoromethylcyclohexanol isomers

    Get PDF
    The isomers of dibenzylamino-1-methylcyclohexan-1-ol and dibenzylamino-1-trifluoromethylcyclohexan-1-ol have been prepared. The stereochemistry of these compounds was unequivocally assigned through a combination of NMR spectroscopy and single crystal X-ray analysis. The cis-isomer of 3-N,N-dibenzylamino-1-trifluoromethylcyclohexanol and its derivatives display an unusual conformational behaviour in both solution-phase and the solid-state, where the amino group usually adopts an axial conformation

    Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties

    Get PDF
    Although many improvements have been made in phase 5 of the Coupled Model Intercomparison Project (CMIP5), clouds remain a significant source of uncertainty in general circulation models (GCMs) because their structural and optical properties are strongly dependent upon interactions between aerosol/cloud microphysics and dynamics that are unresolved in such models. Recent changes to the planetary boundary layer (PBL) turbulence and moist convection parameterizations in the NASA GISS Model E2 atmospheric GCM(post-CMIP5, hereafter P5) have improved cloud simulations significantly compared to its CMIP5 (hereafter C5) predecessor. A study has been performed to evaluate these changes between the P5 and C5 versions of the GCM, both of which used prescribed sea surface temperatures. P5 and C5 simulated cloud fraction (CF), liquid water path (LWP), ice water path (IWP), cloud water path (CWP), precipitable water vapor (PWV), and relative humidity (RH) have been compared to multiple satellite observations including the Clouds and the Earth's Radiant Energy System-Moderate Resolution Imaging Spectroradiometer (CERES-MODIS, hereafter CM), CloudSat- Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; hereafter CC), Atmospheric Infrared Sounder (AIRS), and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Although some improvements are observed in the P5 simulation on a global scale, large improvements have been found over the southern midlatitudes (SMLs), where correlations increased and both bias and root-mean-square error (RMSE) significantly decreased, in relation to the previous C5 simulation, when compared to observations. Changes to the PBL scheme have resulted in improved total column CFs, particularly over the SMLs where marine boundary layer (MBL) CFs have increased by nearly 20% relative to the previous C5 simulation. Globally, the P5 simulated CWPs are 25 gm22 lower than the previous C5 results. The P5 version of the GCM simulates PWV and RH higher than its C5 counterpart and agrees well with the AMSR-E and AIRS observations. The moister atmospheric conditions simulated by P5 are consistent with the CF comparison and provide a strong support for the increase in MBL clouds over the SMLs. Over the tropics, the P5 version of the GCM simulated total column CFs and CWPs are slightly lower than the previous C5 results, primarily as a result of the shallower tropical boundary layer in P5 relative to C5 in regions outside the marine stratocumulus decks

    Instability in the Molecular Dynamics Step of Hybrid Monte Carlo in Dynamical Fermion Lattice QCD Simulations

    Get PDF
    We investigate instability and reversibility within Hybrid Monte Carlo simulations using a non-perturbatively improved Wilson action. We demonstrate the onset of instability as tolerance parameters and molecular dynamics step sizes are varied. We compare these findings with theoretical expectations and present limits on simulation parameters within which a stable and reversible algorithm is obtained for physically relevant simulations. Results of optimisation experiments with respect to tolerance prarameters are also presented
    corecore