2,984 research outputs found

    Modelling water diffusion in plasticizers: development and optimization of a force field for 2,4-dinitroethylbenzene and 2,4,6-trinitroethylbenzene

    Get PDF
    A classical all-atom force field has been developed for 2,4,6-trinitroethylbenzene and 2,4-dinitroethylbenzene and applied in molecular dynamics simulations of the two pure and two mixed plasticizer systems. Bonding parameters and partial charges were derived through electronic and geometry optimization of the single molecules. The other required parameters were derived from values already available in the literature for generic nitro aromatic compounds, which were adjusted to reproduce to a high level of accuracy the densities of 2,4-dinitroethylbenzene, 2,4,6-trinitroethylbenzene and the energetic plasticizers K10 and R8002. This force field has been applied to both K10 and R8002, which when used as plasticizers form an energetic binder with nitrocellulose. Nitrocellulose decomposes in storage, under varying conditions, but in particular where it may become increasingly dry. Following the derivation of the force field, we have therefore applied it to calculate water diffusion coefficients for each of the different materials at 298 K and 338 K, thereby providing a starting point for understanding water behaviour in a nitrocellulose binder

    MARDy : Mycology Antifungal Resistance Database

    Get PDF
    J.R. was supported by an Antimicrobial Research Collaborative (ARC) early career research fellowship, Imperial College London (RSRO_54990). T.S. and J.M.G.S. were supported by a Natural Environment Research Council grant awarded to MCF (NE/P001165/1).Peer reviewedPublisher PD

    Global Solutions of the Navier-Stokes Equations for Isentropic Flow with Large External Potential Force

    Full text link
    We prove the global-in-time existence of weak solutions to the Navier-Stokes equations of compressible isentropic flow in three space dimensions with adiabatic exponent γ1\gamma\ge1. Initial data and solutions are small in L2L^2 around a non-constant steady state with densities being positive and essentially bounded. No smallness assumption is imposed on the external forces when γ=1\gamma=1. A great deal of information about partial regularity and large-time behavior is obtained.Comment: 17 page

    Natural history of murine gamma-herpesvirus infection

    Get PDF
    Murine gamma-herpesvirus 68 (MHV-68) is a natural pathogen of small rodents and insectivores (mice, voles and shrews). The primary infection is characterized by virus replication in lung epithelial cells and the establishment of a latent infection in B lymphocytes. The virus is also observed to persist in lung epithelial cells, dendritic cells and macrophages. Splenomegaly is observed two weeks after infection, in which there is a CD4+ T-cell-mediated expansion of B and T cells in the spleen. At three weeks post-infection an infectious mononucleosis-like syndrome is observed involving a major expansion of Vbeta4+CD8+ T cells. Later in the course of persistent infection, ca. 10% of mice develop lymphoproliferative disease characterized as lymphomas of B-cell origin. The genome from MHV-68 strain g2.4 has been sequenced and contains ca. 73 genes, the majority of which are collinear and homologous to other gamma-herpesviruses. The genome includes cellular homologues for a complement-regulatory protein, Bcl-2, cyclin D and interleukin-8 receptor and a set of novel genes M1 to M4. The function of these genes in the context of latent infections, evasion of immune responses and virus-mediated pathologies is discussed. Both innate and adaptive immune responses play an active role in limiting virus infection. The absence of type I interferon (IFN) results in a lethal MHV-68 infection, emphasizing the central role of these cytokines at the initial stages of infection. In contrast, type II IFN is not essential for the recovery from infection in the lung, but a failure of type II IFN receptor signalling results in the atrophy of lymphoid tissue associated with virus persistence. Splenic atrophy appears to be the result of immunopathology, since in the absence of CD8+ T cells no pathology occurs. CD8+ T cells play a major role in recovery from the primary infection, and also in regulating latently infected cells expressing the M2 gene product. CD4+ T cells have a key role in surveillance against virus recurrences in the lung, in part mediated through 'help' in the genesis of neutralizing antibodies. In the absence of CD4+ T cells, virus-specific CD8+ T cells are able to control the primary infection in the respiratory tract, yet surprisingly the memory CD8+ T cells generated are unable to inhibit virus recurrences in the lung. This could be explained in part by the observations that this virus can downregulate major histocompatibility complex class I expression and also restrict inflammatory cell responses by producing a chemokine-binding protein (M3 gene product). MHV-68 provides an excellent model to explore methods for controlling gamma-herpesvirus infection through vaccination and chemotherapy. Vaccination with gp150 (a homologue of gp350 of Epstein-Barr virus) results in a reduction in splenomegaly and virus latency but does not block replication in the lung, nor the establishment of a latent infection. Even when lung virus infection is greatly reduced following the action of CD8+ T cells, induced via a prime-boost vaccination strategy, a latent infection is established. Potent antiviral compounds such as the nucleoside analogue 2'deoxy-5-ethyl-beta-4'-thiouridine, which disrupts virus replication in vivo, cannot inhibit the establishment of a latent infection. Clearly, devising strategies to interrupt the establishment of latent virus infections may well prove impossible with existing methods

    Identification of genes expressed in a mesenchymal subset regulating prostate organogenesis using tissue and single cell transcriptomics

    Get PDF
    Abstract Prostate organogenesis involves epithelial growth controlled by inductive signalling from specialised mesenchymal subsets. To identify pathways active in mesenchyme we used tissue and single cell transcriptomics to define mesenchymal subsets and subset-specific transcript expression. We documented transcript expression using Tag-seq and RNA-seq in female rat Ventral Mesenchymal Pad (VMP) as well as adjacent urethra comprised of smooth muscle and peri-urethral mesenchyme. Transcripts enriched in female VMP were identified with Tag-seq of microdissected tissue, RNA-seq of cell populations, and single cells. We identified 400 transcripts as enriched in the VMP using bio-informatic comparisons of Tag-seq and RNA-seq data, and 44 were confirmed by single cell RNA-seq. Cell subset analysis showed that VMP and adjacent mesenchyme were composed of distinct cell types and that each tissue contained two subgroups. Markers for these subgroups were highly subset specific. Thirteen transcripts were validated by qPCR to confirm cell specific expression in microdissected tissues, as well as expression in neonatal prostate. Immunohistochemical staining demonstrated that Ebf3 and Meis2 showed a restricted expression pattern in female VMP and prostate mesenchyme. We conclude that prostate inductive mesenchyme shows limited cellular heterogeneity and that transcriptomic analysis identified new mesenchymal subset transcripts associated with prostate organogenesis

    MHV-68 producing mIFN␣1 is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68

    Get PDF
    Corrigendum Corrigendum to "MHV-68 producing mIFN␣1 is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68" [Vaccine 29 (2011) In this study, we focused on the effects of interferon-␣ (IFN-␣) on both the lytic and latent phase of MHV-68 infection, as exerted by the constitutive release of IFN-␣1 by a clone of MHV-68 genetically modified to produce this cytokine (MHV-68mIFN␣1). Although the MHV-68mIFN␣1 recombinant virus exhibited in vitro replication features indistinguishable from those of the wild type MHV-68, its pathological properties were severely attenuated in vivo in immunocompetent mice and not in mice rendered genetically unresponsive to type I IFN, suggesting that a stronger immune response was primed in the presence of the cytokine. Notably, MHV-68mIFN␣1 attenuation did not result in a reduced level of longterm spleen latency establishment. These results prompted us to evaluate the efficacy of MHV-68mIFN␣1 in a prophylactic vaccination regimen aimed at inhibiting the symptoms of acute virus infection and the establishment of long-term latency after MHV-68 challenge. Our results show that mice vaccinated with MHV-68mIFN␣1, administered as a live-attenuated or partially inactivated (by Psoralen and UV treatment) vaccine, were protected against the challenge with wt MHV-68 from all phases of infection. The ability of MHV-68mIFN␣1 to produce IFN-␣ at the site of the infection, thus efficiently stimulating the immune system in case of virus reactivation from latency, makes this recombinant virus a safer live-attenuated vaccine as compared to the previously reported latency-deficient clones

    Zephyr: The Seventeenth Issue

    Get PDF
    This is the seventeenth issue of Zephyr, the University of New England\u27s journal of creative expression. Since 2000, Zephyr has published original drawings, paintings, photography, prose, and verse created by current and former members of the University community. Zephyr\u27s Editorial Board is made up exclusively of matriculating students.https://dune.une.edu/zephyr/1260/thumbnail.jp

    Susceptibility of bone marrow derived macrophages to influenza virus infection is dependent on macrophage phenotype

    Get PDF
    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection
    corecore