21,699 research outputs found

    Particle acceleration and magnetic field amplification in the jets of 4C74.26

    Full text link
    We model the multi-wavelength emission in the southern hotspot of the radio quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the amplified downstream magnetic field as expected for small scale turbulence. Electrons are accelerated to only 0.3 TeV, consistent with a diffusion coefficient many orders of magnitude greater than in the Bohm regime. If the same diffusion coefficient applies to the protons, their maximum energy is only ~100 TeV.Comment: Accepted for publication in ApJ. 6 pages - 2 figures. Minor correction

    Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations

    Get PDF
    A new and detailed analysis of the basic Uzawa algorithm for decoupling of the pressure and the velocity in the steady and unsteady Stokes operator is presented. The paper focuses on the following new aspects: explicit construction of the Uzawa pressure-operator spectrum for a semiperiodic model problem; general relationship of the convergence rate of the Uzawa procedure to classical inf-sup discretization analysis; and application of the method to high-order variational discretization

    Push clocks: a new approach to charge-coupled devices clocking

    Get PDF
    A new approach to charge-coupled device clocking has been developed—dynamic push clocks. With dynamic push clocks, the charge is transferred by pushing it from one storage site to another. The push clock approach results in a larger signal dynamic range, larger signal-to-noise ratio, and better performance at both high and low frequencies

    Cosmic ray acceleration to ultrahigh energy in radio galaxies

    Get PDF
    The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.Comment: 6 pages, 4 figures. Proceedings of UHECR 2018, 8-12 October 2018, Paris, Franc

    Amplification of perpendicular and parallel magnetic fields by cosmic ray currents

    Full text link
    Cosmic ray (CR) currents through magnetised plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hot spots. Using magnetohydrodynamic (MHD) simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.Comment: Published in MNRAS. 14 pages, 12 figures, 2 tables. Replacement corrects some typesetting error

    Spectral element methods: Algorithms and architectures

    Get PDF
    Spectral element methods are high-order weighted residual techniques for partial differential equations that combine the geometric flexibility of finite element methods with the rapid convergence of spectral techniques. Spectral element methods are described for the simulation of incompressible fluid flows, with special emphasis on implementation of spectral element techniques on medium-grained parallel processors. Two parallel architectures are considered: the first, a commercially available message-passing hypercube system; the second, a developmental reconfigurable architecture based on Geometry-Defining Processors. High parallel efficiency is obtained in hypercube spectral element computations, indicating that load balancing and communication issues can be successfully addressed by a high-order technique/medium-grained processor algorithm-architecture coupling
    • …
    corecore