37 research outputs found

    Group B streptococcus vaccination in pregnant women with or without HIV in Africa: a non-randomised phase 2, open-label, multicentre trial

    Get PDF
    Background Neonates born to women infected with HIV are at increased risk for invasive group B streptococcus (GBS) disease. We aimed to compare safety and immunogenicity of trivalent glycoconjugate GBS vaccine in pregnant women with and without HIV in Malawi and South Africa. Methods In our non-randomised phase 2, open-label, multicentre study, we recruited pregnant women attending two antenatal clinics, one in Blantyre, Malawi, and one in Soweto, Johannesburg, South Africa. Participants were divided into three groups on the basis of their HIV infection status (no infection, infection and high CD4 cell count [>350 cells per mu L], and infection and low CD4 cell count [>50 to <= 350 cells per mu L]) and received a 5 mu g dose of glycoconjugate GBS vaccine (serotypes Ia, Ib, and III, with CRM197 [Novartis Vaccines, Siena, Italy]) intramuscularly at 24-35 weeks' gestation. GBS serotype-specific antibody concentrations were measured before vaccination (day 1), day 15, day 31, and at delivery, and in infants at birth and day 42 of life. The primary outcomes were safety in mothers and infants and the amount of placental transfer of GBS serotype-specific antibodies from mothers to their infants. All immunogenicity and safety analyses were done on the full analysis set, including participants who, or whose mother, correctly received the vaccine and who provided at least one valid assessable serum sample. This study is registered with ClinicalTrials.gov, number NCT01412801. Findings 270 women and 266 infants were enrolled between Sept 26, 2011, and Dec 4, 2012 (90 women and 87 infants without HIV, 89 and 88 with HIV and high CD4 cell counts, and 91 and 91 with HIV and low CD4 cell counts, respectively). Seven women were lost to follow-up, six withdrew consent, one died, and two relocated. Eight infants died or were stillborn and two were lost to follow-up. Across serotypes, fold change in antibody concentrations were higher for the HIV-uninfected group than the HIV-infected groups. Transfer ratios were similar across all three groups (0.49-0.72; transfer ratio is infant geometric mean antibody concentration in blood collected within 72 h of birth divided by maternal geometric mean antibody concentration in blood collected at delivery); however, at birth, maternally derived serotype-specific antibody concentrations were lower for infants born to women infected with HIV (0.52-1.62 mu g/mL) than for those born to women not infected with HIV (2.67-3.91 mu g/mL). 151 (57%) of 265 women reported at least one solicited adverse reaction: 39 (45%) of 87 women with HIV and low CD4 cell counts, 52 (59%) of 88 women with HIV and high CD4 cell counts, and 60 (67%) of 90 women in the HIV-uninfected group. 49 (18%) of 269 women had at least one adverse event deemed possibly related to the vaccine (six [7%] in the HIV and low CD4 cell count group, 12 [13%] in the HIV and high CD4 cell count group, and 21 [23%] in the HIV-uninfected group), as did three (1%) of 266 neonates (zero, two [1%], and one [1%]); none of these events was regarded as serious. Interpretation The vaccine was less immunogenic in women infected with HIV than it was in those not infected, irrespective of CD4 cell count, resulting in lower levels of serotype-specific maternal antibody transferred to infants, which could reduce vaccine protection against invasive GBS disease. A validated assay and correlate of protection is needed to understand the potential protective value of this vaccine. Copyright (C) Heyderman et al. Open Access article distributed under the terms of CC BY

    Safety and immunogenicity of a parenteral P2-VP8-P[8] subunit rotavirus vaccine in toddlers and infants in South Africa : a randomised, double-blind, placebo-controlled trial

    Get PDF
    BACKGROUND Efficacy of live oral rotavirus vaccines is reduced in low-income compared with high-income settings. Parenteral non-replicating rotavirus vaccines might offer benefits over oral vaccines. We assessed the safety and immunogenicity of the P2-VP8-P[8] subunit rotavirus vaccine at different doses in South African toddlers and infants. Methods This double-blind, randomised, placebo-controlled, dose-escalation trial was done at a single research unit based at a hospital in South Africa in healthy HIV-uninfected toddlers (aged 2 to <3 years) and term infants (aged 6 to <8 weeks, without previous rotavirus vaccination). Block randomisation (computer-generated, electronic allocation) was used to assign eligible toddlers (in a 6:1 ratio) and infants (in a 3:1 ratio) in each dose cohort (10 ÎŒg, followed by 30 ÎŒg, then 60 ÎŒg if doses tolerated) to parenteral P2-VP8-P[8] subunit rotavirus or placebo injection. The two highest tolerated doses were then assessed in an expanded cohort (in a 1:1:1 ratio). Parents of participants and clinical, data, and laboratory staff were masked to treatment assignment. P2-VP8-P[8] vaccine versus placebo was assessed first in toddlers (single injection) and then in infants (three injections 4 weeks apart). The primary safety endpoints were local and systemic reactions within 7 days after each injection, adverse events within 28 days after each injection, and all serious adverse events, assessed in toddlers and infants who received at least one dose. In infants receiving all study injections, primary immunogenicity endpoints were anti-P2-VP8-P[8] IgA and IgG and neutralising antibody seroresponses and geometric mean titres 4 weeks after the third injection. This trial is registered at ClinicalTrials.gov, number NCT02109484. FINDINGS Between March 17, 2014, and Sept 29, 2014, 42 toddlers (36 to vaccine and six to placebo) and 48 infants (36 to vaccine and 12 to placebo) were enrolled in the dose-escalation phase, in which the 30 ÎŒg and 60 ÎŒg doses where found to be the highest tolerated doses. A further 114 infants were enrolled in the expanded cohort between Nov 3, 2014, and March 20, 2015, and all 162 infants (12 assigned to 10 ÎŒg, 50 to 30 ÎŒg, 50 to 60 ÎŒg, and 50 to placebo) were included in the safety analysis. Serum IgA seroresponses were observed in 38 (81%, 95% CI 67–91) of 47 infants in the 30 ÎŒg group and 32 (68%, 53–81) of 47 in the 60 ÎŒg group, compared with nine (20%, 10–35) of 45 in the placebo group; adjusted IgG seroresponses were seen in 46 (98%, 89–100) of 47 infants in the 30 ÎŒg group and 47 (100%; 92–100) of 47 in the 60 ÎŒg group, compared with four (9%, 2·5–21) of 45 in the placebo group; and adjusted neutralising antibody seroresponses against the homologous Wa-strain were seen in 40 (85%, 72–94) of 47 infants in both the 30 ÎŒg and 60 ÎŒg groups, compared with three (7%, 1·4–18) of 45 participants in the placebo group. Solicited reactions following any injection occurred with similar frequency and severity in participants receiving vaccine and those receiving placebo. Unsolicited adverse events were mostly mild and occurred at a similar frequency between groups. Eight serious adverse events (one with placebo, two with 30 ÎŒg, and five with 60 ÎŒg) occurred in seven infants within 28 days of any study injection, none of which were deemed related to study treatment. INTERPRETATION The parenteral P2-VP8-P[8] vaccine was well tolerated and immunogenic in infants, providing a novel approach to vaccination against rotavirus disease. On the basis of these results, a phase 1/2 trial of a trivalent P2-VP8 (P[4], P[6], and P[8]) subunit vaccine is underway at three sites in South Africa.Bill & Melinda Gates Foundation.MJG reports funding from PATH Vaccine Solutions and personal fees from GlaxoSmithKline. AK and LJ report funding from PATH Vaccine Solutions. NP reports honoraria from GlaxoSmithKline, Merck, and Aspen Pharma. SAM reports grants from PATH, grants from Novartis and GlaxoSmithKline, and grants and personal fees from Pfizer and the Bill & Melinda Gates Foundation. MM reports laboratory service agreements with PATH, Merck, and GlaxoSmithKline. IC reports funding from PATH and is a paid consultant for PATH. MP is an employee of PATH, and reports grants from the Bill & Melinda Gates Foundation. AF, JF, LD, and SC declare no competing interests.http://www.thelancet.com/infectionam2017Medical Virolog

    Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine : a multisite, randomised, double-blind, placebo-controlled trial

    Get PDF
    BACKGROUND : A monovalent, parenteral, subunit rotavirus vaccine was well tolerated and immunogenic in adults in the USA and in toddlers and infants in South Africa, but elicited poor responses against heterotypic rotavirus strains. We aimed to evaluate safety and immunogenicity of a trivalent vaccine formulation (P2-VP8-P[4],[6],[8]). METHODS : A double-blind, randomised, placebo-controlled, dose-escalation, phase 1/2 study was done at three South African research sites. Healthy adults (aged 18–45 years), toddlers (aged 2–3 years), and infants (aged 6–8 weeks, ≄37 weeks’ gestation, and without previous receipt of rotavirus vaccination), all without HIV infection, were eligible for enrolment. In the dose-escalation phase, adults and toddlers were randomly assigned in blocks (block size of five) to receive 30 ÎŒg or 90 ÎŒg of vaccine, or placebo, and infants were randomly assigned in blocks (block size of four) to receive 15 ÎŒg, 30 ÎŒg, or 90 ÎŒg of vaccine, or placebo. In the expanded phase, infants were randomly assigned in a 1:1:1:1 ratio to receive 15 ÎŒg, 30 ÎŒg, or 90 ÎŒg of vaccine, or placebo, in block sizes of four. Participants, parents of participants, and clinical, data, and laboratory staff were masked to treatment assignment. Adults received an intramuscular injection of vaccine or placebo in the deltoid muscle on the day of randomisation (day 0), day 28, and day 56; toddlers received a single injection of vaccine or placebo in the anterolateral thigh on day 0. Infants in both phases received an injection of vaccine or placebo in the anterolateral thigh on days 0, 28, and 56, at approximately 6, 10, and 14 weeks of age. Primary safety endpoints were local and systemic reactions (grade 2 or worse) within 7 days and adverse events and serious adverse events within 28 days after each injection in all participants who received at least one injection. Primary immunogenicity endpoints were analysed in infants in either phase who received all planned injections, had blood samples analysed at the relevant timepoints, and presented no major protocol violations considered to have an effect on the immunogenicity results of the study, and included serum anti-P2-VP8 IgA, IgG, and neutralising antibody geometric mean titres and responses measured 4 weeks after the final injection in vaccine compared with placebo groups. This trial is registered with ClinicalTrials.gov, NCT02646891. FINDINGS : Between Feb 15, 2016, and Dec 22, 2017, 30 adults (12 each in the 30 ÎŒg and 90 ÎŒg groups and six in the placebo group), 30 toddlers (12 each in the 30 ÎŒg and 90 ÎŒg groups and six in the placebo group), and 557 infants (139 in the 15 ÎŒg group, 140 in the 30 ÎŒg group, 139 in the 90 ÎŒg group, and 139 in the placebo group) were randomly assigned, received at least one dose, and were assessed for safety. There were no significant differences in local or systemic adverse events, or unsolicited adverse events, between vaccine and placebo groups. There were no serious adverse events within 28 days of injection in adults, whereas one serious adverse event occurred in a toddler (febrile convulsion in the 30 ÎŒg group) and 23 serious adverse events (four in placebo, ten in 15 ÎŒg, four in 30 ÎŒg, and five in 90 ÎŒg groups) occurred among 20 infants, most commonly respiratory tract infections. One death occurred in an infant within 28 days of injection due to pneumococcal meningitis. In 528 infants (130 in placebo, 132 in 15 ÎŒg, 132 in 30 ÎŒg, and 134 in 90 ÎŒg groups), adjusted anti-P2-VP8 IgG seroresponses (≄4-fold increase from baseline) to P[4], P[6], and P[8] antigens were significantly higher in the 15 ÎŒg, 30 ÎŒg, and 90 ÎŒg groups (99–100%) than in the placebo group (10–29%; p<0·0001). Although significantly higher than in placebo recipients (9–10%), anti-P2-VP8 IgA seroresponses (≄4-fold increase from baseline) to each individual antigen were modest (20–34%) across the 15 ÎŒg, 30 ÎŒg, and 90 ÎŒg groups. Adjusted neutralising antibody seroresponses in infants (≄2·7-fold increase from baseline) to DS-1 (P[4]), 1076 (P[6]), and Wa (P[8]) were higher in vaccine recipients than in placebo recipients: p<0·0001 for all comparisons. INTERPRETATION : The trivalent P2-VP8 vaccine was well tolerated, with promising anti-P2-VP8 IgG and neutralising antibody responses across the three vaccine P types. Our findings support advancing the vaccine to efficacy testing.The Bill and Melinda Gates Foundationhttp://www.thelancet.comam2020Medical Virolog

    Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial.

    Get PDF
    BACKGROUND: People living with HIV are at an increased risk of fatal outcome when admitted to hospital for severe COVID-19 compared with HIV-negative individuals. We aimed to assess safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV and HIV-negative individuals in South Africa. METHODS: In this ongoing, double-blind, placebo-controlled, phase 1B/2A trial (COV005), people with HIV and HIV-negative participants aged 18-65 years were enrolled at seven South African locations and were randomly allocated (1:1) with full allocation concealment to receive a prime-boost regimen of ChAdOx1 nCoV-19, with two doses given 28 days apart. Eligibility criteria for people with HIV included being on antiretroviral therapy for at least 3 months, with a plasma HIV viral load of less than 1000 copies per mL. In this interim analysis, safety and reactogenicity was assessed in all individuals who received at least one dose of ChAdOx1 nCov 19 between enrolment and Jan 15, 2021. Primary immunogenicity analyses included participants who received two doses of trial intervention and were SARS-CoV-2 seronegative at baseline. This trial is registered with ClinicalTrials.gov, NCT04444674, and the Pan African Clinicals Trials Registry, PACTR202006922165132. FINDINGS: Between June 24 and Nov 12, 2020, 104 people with HIV and 70 HIV-negative individuals were enrolled. 102 people with HIV (52 vaccine; 50 placebo) and 56 HIV-negative participants (28 vaccine; 28 placebo) received the priming dose, 100 people with HIV (51 vaccine; 49 placebo) and 46 HIV-negative participants (24 vaccine; 22 placebo) received two doses (priming and booster). In participants seronegative for SARS-CoV-2 at baseline, there were 164 adverse events in those with HIV (86 vaccine; 78 placebo) and 237 in HIV-negative participants (95 vaccine; 142 placebo). Of seven serious adverse events, one severe fever in a HIV-negative participant was definitely related to trial intervention and one severely elevated alanine aminotranferase in a participant with HIV was unlikely related; five others were deemed unrelated. One person with HIV died (unlikely related). People with HIV and HIV-negative participants showed vaccine-induced serum IgG responses against wild-type Wuhan-1 Asp614Gly (also known as D614G). For participants seronegative for SARS-CoV-2 antigens at baseline, full-length spike geometric mean concentration (GMC) at day 28 was 163·7 binding antibody units (BAU)/mL (95% CI 89·9-298·1) for people with HIV (n=36) and 112·3 BAU/mL (61·7-204·4) for HIV-negative participants (n=23), with a rising day 42 GMC booster response in both groups. Baseline SARS-CoV-2 seropositive people with HIV demonstrated higher antibody responses after each vaccine dose than did people with HIV who were seronegative at baseline. High-level binding antibody cross-reactivity for the full-length spike and receptor-binding domain of the beta variant (B.1.351) was seen regardless of HIV status. In people with HIV who developed high titre responses, predominantly those who were receptor-binding domain seropositive at enrolment, neutralising activity against beta was retained. INTERPRETATION: ChAdOx1 nCoV-19 was well tolerated, showing favourable safety and immunogenicity in people with HIV, including heightened immunogenicity in SARS-CoV-2 baseline-seropositive participants. People with HIV showed cross-reactive binding antibodies to the beta variant and Asp614Gly wild-type, and high responders retained neutralisation against beta. FUNDING: The Bill & Melinda Gates Foundation, South African Medical Research Council, UK Research and Innovation, UK National Institute for Health Research, and the South African Medical Research Council

    Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant.

    Get PDF
    BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens progress toward control of the coronavirus disease 2019 (Covid-19) pandemic. In a phase 1-2 trial involving healthy adults, the NVX-CoV2373 nanoparticle vaccine had an acceptable safety profile and was associated with strong neutralizing-antibody and antigen-specific polyfunctional CD4+ T-cell responses. Evaluation of vaccine efficacy was needed in a setting of ongoing SARS-CoV-2 transmission. METHODS: In this phase 2a-b trial in South Africa, we randomly assigned human immunodeficiency virus (HIV)-negative adults between the ages of 18 and 84 years or medically stable HIV-positive participants between the ages of 18 and 64 years in a 1:1 ratio to receive two doses of either the NVX-CoV2373 vaccine (5 ÎŒg of recombinant spike protein with 50 ÎŒg of Matrix-M1 adjuvant) or placebo. The primary end points were safety and vaccine efficacy against laboratory-confirmed symptomatic Covid-19 at 7 days or more after the second dose among participants without previous SARS-CoV-2 infection. RESULTS: Of 6324 participants who underwent screening, 4387 received at least one injection of vaccine or placebo. Approximately 30% of the participants were seropositive for SARS-CoV-2 at baseline. Among 2684 baseline seronegative participants (94% HIV-negative and 6% HIV-positive), predominantly mild-to-moderate Covid-19 developed in 15 participants in the vaccine group and in 29 in the placebo group (vaccine efficacy, 49.4%; 95% confidence interval [CI], 6.1 to 72.8). Vaccine efficacy among HIV-negative participants was 60.1% (95% CI, 19.9 to 80.1). Of 41 sequenced isolates, 38 (92.7%) were the B.1.351 variant. Post hoc vaccine efficacy against B.1.351 was 51.0% (95% CI, -0.6 to 76.2) among the HIV-negative participants. Preliminary local and systemic reactogenicity events were more common in the vaccine group; serious adverse events were rare in both groups. CONCLUSIONS: The NVX-CoV2373 vaccine was efficacious in preventing Covid-19, with higher vaccine efficacy observed among HIV-negative participants. Most infections were caused by the B.1.351 variant. (Funded by Novavax and the Bill and Melinda Gates Foundation; ClinicalTrials.gov number, NCT04533399.)

    Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant.

    Get PDF
    BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132)

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    BackgroundA safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials.MethodsThis analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674.FindingsBetween April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation.InterpretationChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials.FundingUK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill &amp; Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
    corecore