46 research outputs found
Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: a multicriteria framework
The number of people with dementia (PwD) is increasing dramatically. PwD exhibit impairments of reasoning, memory, and thought that require some form of selfâmanagement intervention to support the completion of everyday activities while maintaining a level of independence. To address this need, efforts have been directed to the development of assistive technology solutions, which may provide an opportunity to alleviate the burden faced by the PwD and their carers. Nevertheless, uptake of such solutions has been limited. It is therefore necessary to use classifiers to discriminate between adopters and nonadopters of these technologies in order to avoid cost overruns and potential negative effects on quality of life. As multiple classification algorithms have been developed, choosing the most suitable classifier has become a critical step in technology adoption. To select the most appropriate classifier, a set of criteria from various domains need to be taken into account by decision makers. In addition, it is crucial to define the most appropriate multicriteria decisionâmaking approach for the modelling of technology adoption. Considering the aboveâmentioned aspects, this paper presents the integration of a fiveâphase methodology based on the Fuzzy Analytic Hierarchy Process and the Technique for Order of Preference by Similarity to Ideal Solution to determine the most suitable classifier for supporting assistive technology adoption studies. Fuzzy Analytic Hierarchy Process is used to determine the relative weights of criteria and subcriteria under uncertainty and Technique for Order of Preference by Similarity to Ideal Solution is applied to rank the classifier alternatives. A case study considering a mobileâbased selfâmanagement and reminding solution for PwD is described to validate the proposed approach. The results revealed that the best classifier was kânearestâneighbour with a closeness coefficient of 0.804, and the most important criterion when selecting classifiers is scalability. The paper also discusses the strengths and weaknesses of each algorithm that should be addressed in future research
Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness
This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (âŒ5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf playerâs performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive
An Efficient Technique to Detect Visual Defects in Particleboards
This paper is concerned with the problem of image analysis based detection of local defects embedded in particleboard surfaces. Though simple, but efficient technique developed is based on the analysis of the discrete probability distribution of the image intensity values and the 2D discrete Walsh transform. Robust global features characterizing a surface texture are extracted and then analyzed by a pattern classifier. The classifier not only assigns the pattern into the quality or detective class, but also provides the certainty value attributed to the decision. A 100% correct classification accuracy was obtained when testing the technique proposed on a set of 200 images
System for Assessing, Exploring and Monitoring Offset Print Quality
Variations in offset print quality relate to numerous parameter of printing press and paper. To maintain constant quality of products, press operators need to assess, explore and monitor print quality. This paper presents a novel system for assessing and predicting values of print quality attributes, where the adopted, random forests (RF)-based, modeling approach also allows quantifying the influence of different parameters. In contrast to other print quality assessment systems, this system utilizes common print marks known as double grey-bars. A novel virtual sensor for assessing the mis-registration degree of printing plates using images of double grey-bars is presented. The inferred influence of paper and printing press parameters on print quality shows correlation with known print quality conditions
Detecting Halftone Dots for Offset Print Quality Assessment Using Soft Computing
Nowadays in printing industry most of information processing steps are highly automated, except the last oneâprint quality assessment and control. We present a way to assess one important aspect of print quality, namely the distortion of halftone dots printed colour pictures are made of. The problem is formulated as assessing the distortion of circles detected in microscale images of halftone dot areas. In this paper several known circle detection techniques are explored in terms of accuracy and robustness. We also present a new circle detection technique based on the fuzzy Hough transform (FHT) extended with k-means clustering for detecting positions of accumulator peaks and with an optional fine-tuning step implemented through unsupervised learning. Prior knowledge about the approximate positions and radii of the circles is utilized in the algorithm. Compared to FHT the proposed technique is shown to increase the estimation accuracy of the position and size of detected circles. The techniques are investigated using synthetic and natural images.©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.PP
Ink feed control in a web-fed offset printing press
Automatic and robust ink feed control in a web- fed offset printing press is the objective of this work. To achieve this goal an integrating controller and a multiple neural models-based controller are combined. The neural networks-based printing process models are built and updated automatically without any interaction from the user. The multiple models-based controller is superior to the integrating controller as the process is running in the training region of the models. However, the multiple models-based controller may run into generalisation prob- lems if the process starts operating in a new part of the input space. Such situations are automatically detected and the integrating controller temporary takes over the process control. The developed control configuration has success- fully been used to automatically control the ink feed in the web-fed offset printing press according to the target amount of ink. Use of the developed tools led to higher print quality and lower ink and paper waste
Ink feed control in a web-fed offset printing press
Abstract Automatic and robust ink feed control in a webfed offset printing press is the objective of this work. To achieve this goal an integrating controller and a multiple neural models-based controller are combined. The neural networks-based printing process models are built and updated automatically without any interaction from the user. The multiple models-based controller is superior to the integrating controller as the process is running in the training region of the models. However, the multiple models-based controller may run into generalisation problems if the process starts operating in a new part of the input space. Such situations are automatically detected and the integrating controller temporary takes over the process control. The developed control configuration has successfully been used to automatically control the ink feed in the web-fed offset printing press according to the target amount of ink. Use of the developed tools led to higher print quality and lower ink and paper waste
A Serial-Parallel Panoramic Filter Bank as a Model of Frequency Decomposition of Complex Sounds in the Human Inner Ear
We consider that the outer hair cells of the inner ear together with the local structuresof the basilar membrane, reticular lamina and tectorial membrane form the primary filters (PF) ofthe second order. Taking into account a delay in transmission of the excitation signal in the cochleaand the influence of the Reissner membrane, we design a signal filtering system consisting of thePF with the common PF of the neighboring channels. We assess the distribution of the centralfrequencies of the channels along the cochlea, optimal number of the PF constituting a channel,natural frequencies of the channels, damping factors and summation weights of the outputs of thePF. As an example, we present a filter bank comprising 20 Gaussian-type channels each consistingof five PF. The proposed filtering system can be useful for designing cochlear implants based onbiological principles of signal processing in the cochlea