9 research outputs found

    Genetic discontinuity between local hunter-gatherers and Europes first farmers

    Get PDF
    Following the domestication of animals and crops in the Near East some 11,000 years ago, farming reached much of Central Europe by 7,500 before present. The extent to which these early European farmers ere immigrants, or descendants of resident hunter-gatherers who had learnt farming, has been widely debated. We compare new mitochondrial DNA (mtDNA) sequences from late European hunter-gatherer skeletons with those from early farmers, and from modern Europeans. We find large genetic differences betwee all three groups that cannot be explained by population continuity alone. Most (82 %) of the ancient hunter-gatherers share mtDNA types that are relatively rare in Central Europeans today. Together, thse analyses provide persuasive evidence that the first farmers were not the descendants of local hunergatherers but immigrated into Central Europe at the onset of the Neolithic

    Investigating dietary life histories and mobility of children buried in St Gertrude Church Cemetery, Riga, Latvia (15th– 17th centuries AD)

    Get PDF
    Carbon and nitrogen isotope profiles were obtained from incremental dentine analysis of 19 non‐adults from a cemetery in Riga, Latvia. The research compared the life histories and diet between people buried in two mass graves and the general cemetery. The δ13C profiles of several children from the mass graves were similar but did not resemble the patterns seen in children from the general cemetery, suggesting that they probably represented a different population group. The rise in δ15N values towards the end of the life of four individuals from one mass grave suggests they were victims of an historically documented famine

    Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe

    Get PDF
    The aim of this research is to examine the isotopic characterisation of archaeological fish species as it relates to freshwater, brackish and marine environments, trophic level and migration patterns, and to determine intraspecies variation within and between fish populations in different locations within central and northern Europe. Carbon and nitrogen stable isotope analysis was undertaken on collagen extracted from 72 fish bone samples from eight Mesolithic and Neolithic archaeological sites in this region. Thirty-six (50%) of the specimens analysed produced results with acceptable carbon to nitrogen atomic ratios (2·9–3·6). The fish remains encompassed a wide spectrum of freshwater, brackish and marine taxa (n = 12), which were reflected in the δ13C values (−24·5 to −7·8‰). The freshwater/brackish fish (pike, Esox lucius; perch, Perca fluviatilis; zander, Sander lucioperca) had δ13C values that ranged from −24·2 to −19·3‰, whereas the brackish/marine fish (spurdog, Squalus acanthias; flatfish, Pleuronectidae; codfish, Gadidae; garfish, Belone belone; mackerel, Scomber scombrus) ranged from −14·9 to −9·4‰. Salmonidae, an anadromous taxon, and eel (Anguilla anguilla), a catadromous species, had carbon isotope values consistent with marine origin, and no evidence of freshwater residency (−12·7 to −11·7‰). The δ15N values had a range of 6·2‰ (6·5–12·7‰) indicating that these fish were on average feeding at 1·7 trophic levels higher than their producers in these diverse aquatic environments. These results serve as an important ecological baseline for the future isotopic reconstruction of the diet of human populations dating to the late Mesolithic and early Neolithic of the region
    corecore