17 research outputs found
Influência dos constituintes químicos dos extratos de diferentes matrizes na resposta cromatográfica de agrotóxicos Influence of the chemical constituents of extracts from different matrices in the pesticide chromatographic response
<abstract language="eng">Multiresidue methods for pesticides monitoring by GC are commonly employed, however, it is well known that the presence of compounds of the matrix introduces errors during the quantiûcation. The main consequence of matrix effect is an increasing or decreasing analyte signal after the GC saturation with extracts of matrix. In this paper, the influence of constituents of nine matrices on the quantification of the four pesticides by GC-ECD was studied. Variation of signal was evaluated by PCA and HCA, and results showed that the constituents of tomato increased the signal (until 300%), while extracts of apple decreased (until -20%). Variation the analyte signal in the presence of the matrix in respect to the same analyte in solvent (standard solution) also was observed, mainly for liver extract (until 270%)
Saline water irrigation managements on growth of ornamental plants
ABSTRACT Biosaline agriculture is an option for using waters with lower quality. Thus, the objective of this study was to evaluate the growth of ornamental species under irrigation with increasing water salinity levels in two methods of water application. The study was conducted in a greenhouse, in the municipality of Fortaleza, Ceará, Brazil. The treatments were distributed in randomized blocks in split plots, with six levels of water salinity in the plots (0.6 - control, 1.2, 1.8, 2.4, 3.0 and 3.6 dS m-1), two methods of water application in the subplots (localized and sprinkler irrigation) and four ornamental species in the sub-subplots (Catharanthus roseus, Allamanda cathartica, Ixora coccinea and Duranta erecta), with four replicates. Increase in irrigation water electrical conductivity reduced the growth of the studied ornamental species. It was not possible to establish an ideal method for irrigation of ornamental species. Effects of non-localized irrigation on leaf growth were more evident in the species C. roseus and D. erecta, which showed higher specific leaf area
Interação entre salinidade e biofertilizante bovino na cultura do feijão-de-corda Interaction between water salinity and bovine biofertilizer on the cowpea plants
Objetivou-se avaliar a interação entre salinidade e o uso de biofertilizante bovino sobre a condutividade elétrica do solo, crescimento inicial, trocas gasosas e teores de elementos minerais no feijão-de-corda. O experimento foi conduzido em ambiente protegido do Departamento de Ciências dos Solos - UFC. A semeadura foi feita em vasos, utilizando-se, como substrato, um Argissolo Vermelho Amarelo. O experimento obedeceu a um delineamento inteiramente casualizado, em esquema fatorial 5 x 2, referente a cinco níveis de sais da água de irrigação e dois de biofertilizante bovino. O aumento dos níveis salinos da água de irrigação inibiu o crescimento inicial das plantas, sendo menos afetado no solo com o biofertilizante. O aumento da salinidade da água aliado à aplicação do biofertilizante, resultou no aumento da salinidade do solo. O aumento do teor salino da água de irrigação provocou redução nas trocas gasosas, mas em menor proporção nas plantas desenvolvidas nos tratamentos com o biofertilizante. A extração dos elementos essenciais e de sódio obedeceu a seguinte ordem: Ca > K > Na > P. A aplicação de biofertilizante bovino foi eficiente ao aumentar os teores de P na planta e de aumentar os totais extraídos de K, P e Ca, independente no nível de salinidade aplicado. Entretanto, os efeitos benéficos da aplicação de biofertilizante bovino sobre o crescimento, trocas gasosas e extração de nutrientes, são menos expressivos nos maiores níveis de salinidade da água de irrigação.The objective of this study was to evaluate the interaction between salinity levels of the water and the use of biofertilizer soil electrical conductivity of soil, initial growth, gas exchange and mineral content in cowpea plants. The experiment was performed conducted under greenhouse of the Department of Soil Science - UFC. The sowing of seeds was done in pots, using as a substrate Alfissol and two plants per pot. The experimental design was completely randomized in a 5 x 2 factorial, with 5 levels of salts and 2 levels of biofertilizer. The increase in salinity levels of irrigation water inhibited the initial growth of the plant, being less affected in the presence of biofertilizer. The high salinity combined with application of biofertilizer caused an increase in soil salinity. Increasing salinity of irrigation water caused reduction in gas exchange, being less affected by the presence of biofertilizer. The extraction of essential elements and sodium followed the order: Ca> K> Na> P. The application of biofertilizer was effective to increase the P concentration in plant and increase the total extracted K, Ca and P, regardless of salinity level applied. However, the beneficial effects of application of biofertilizer on growth, gas exchange and nutrient uptake, were less significant in the highest levels of irrigation water salinity
Saline water irrigation managements on growth of ornamental plants
<div><p>ABSTRACT Biosaline agriculture is an option for using waters with lower quality. Thus, the objective of this study was to evaluate the growth of ornamental species under irrigation with increasing water salinity levels in two methods of water application. The study was conducted in a greenhouse, in the municipality of Fortaleza, Ceará, Brazil. The treatments were distributed in randomized blocks in split plots, with six levels of water salinity in the plots (0.6 - control, 1.2, 1.8, 2.4, 3.0 and 3.6 dS m-1), two methods of water application in the subplots (localized and sprinkler irrigation) and four ornamental species in the sub-subplots (Catharanthus roseus, Allamanda cathartica, Ixora coccinea and Duranta erecta), with four replicates. Increase in irrigation water electrical conductivity reduced the growth of the studied ornamental species. It was not possible to establish an ideal method for irrigation of ornamental species. Effects of non-localized irrigation on leaf growth were more evident in the species C. roseus and D. erecta, which showed higher specific leaf area.</p></div
Gas exchange of four woody species under salinity and soil waterlogging
ABSTRACT The objective of this study was to evaluate gas exchanges in seedlings of forest species grown in saline soils and subjected to soil waterlogging cycles. The experimental design was completely randomized in a factorial arrangement, with four forest species: Myracrodruon urundeuva Fr Allemão, Mimosa caesalpiniifolia Benth, Tabebuia impetiginosa (Mart. ex. DC.) Standl and Azadirachta indica A. Juss, two soil salinity levels (1.2 and 8.6 dS m-1) and two water regimes (with and without waterlogging). Measurements of stomatal conductance, transpiration and CO2 assimilation rate were performed before and after each waterlogging period. The interaction of the highest saline level (8.6 dS m-1) and waterlogging caused greater reductions in leaf gas exchange, except for Mimosa caesalpiniifolia Benth. Tabebuia impetiginosa (Mart. ex. DC.) Standl was the species with highest sensitivity to both studied factors of stress
Gas exchange of four woody species under salinity and soil waterlogging
<div><p>ABSTRACT The objective of this study was to evaluate gas exchanges in seedlings of forest species grown in saline soils and subjected to soil waterlogging cycles. The experimental design was completely randomized in a factorial arrangement, with four forest species: Myracrodruon urundeuva Fr Allemão, Mimosa caesalpiniifolia Benth, Tabebuia impetiginosa (Mart. ex. DC.) Standl and Azadirachta indica A. Juss, two soil salinity levels (1.2 and 8.6 dS m-1) and two water regimes (with and without waterlogging). Measurements of stomatal conductance, transpiration and CO2 assimilation rate were performed before and after each waterlogging period. The interaction of the highest saline level (8.6 dS m-1) and waterlogging caused greater reductions in leaf gas exchange, except for Mimosa caesalpiniifolia Benth. Tabebuia impetiginosa (Mart. ex. DC.) Standl was the species with highest sensitivity to both studied factors of stress.</p></div